
Loop and Data Transformations for Sparse Matrix Code

Anand Venkat Mary Hall
University of Utah, USA

{anandv,mhall}@cs.utah.edu

Michelle Strout
Colorado State University, USA

mstrout@cs.colostate.edu

Abstract
This paper introduces three new compiler transformations for rep-
resenting and transforming sparse matrix computations and their
data representations. In cooperation with run-time inspection, our
compiler derives transformed matrix representations and associated
transformed code to implement a variety of representations tar-
geting different architecture platforms. This systematic approach
to combining code and data transformations on sparse computa-
tions, which extends a polyhedral transformation and code gener-
ation framework, permits the compiler to compose these trans-
formations with other transformations to generate code that is
on average within 5% and often exceeds manually-tuned, high-
performance sparse matrix libraries CUSP and OSKI. Additionally,
the compiler-generated inspector codes are on average 1.5× faster
than OSKI and perform comparably to CUSP, respectively.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]; D.3.4 [Processors]: Code generation, Compilers, Op-
timization

General Terms Languages, Performance

Keywords sparse matrices, non-affine, inspector/executor, poly-
hedral model, loop transformations

1. Introduction
Sparse matrix computations represent an important class of algo-
rithms that arise frequently in numerical simulation and graph ana-
lytics. To reduce computation and storage requirements, sparse ma-
trix representations attempt to store only the nonzero data elements,
with indirection matrices to make it possible to determine the lo-
cation of the nonzero in the corresponding dense matrix. Because
of irregular and unpredictable memory access patterns, sparse ma-
trix computations are notoriously memory bound, and this prob-
lem is getting worse on modern architectures where cost of data
movement dwarfs computation. To address these performance chal-
lenges, in recent years there has been a significant body of research
on new sparse matrix representations and their implementations
that specialize for particular application domains and new archi-
tectures [7, 8, 25, 27, 29, 40, 45, 48].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

A common approach to encapsulate high-performance imple-
mentations of new sparse matrix representations and convert to
them from standard representations involves using a manually-
tuned library. Sparse matrix and graph libraries employ a variety
of sparse matrix representations to exploit whatever structure is
present in the nonzeros of the input matrix [5, 8, 14, 26, 29, 46]. For
example, the specific representations BCSR, DIA and ELL con-
sidered in this paper, all widely used in libraries, insert a small
number of zero-valued elements into the sparse matrix represen-
tation, which has the effect of increasing computation but making
memory access patterns and generated code more regular and effi-
cient. A purely library approach has several weaknesses: (1) there
are dozens of sparse matrix representations in common use, and
many new ones being developed, and the code for each represen-
tation must be manually optimized; (2) libraries must be manually
ported to new architectures; and, (3) a library encapsulates individ-
ual functions that cannot be composed in an application (e.g., only
performs a single sparse matrix-vector multiply or computation of
similar scope).

While ideally a compiler can be used to provide generality,
architecture portability, and composability with other transforma-
tions, compilers have been severely limited in their ability to opti-
mize sparse matrix computations due to the indirection that arises
in indexing and looping over just the nonzero elements. This in-
direction gives rise to non-affine subscript expressions and loop
bounds; i.e., array subscripts and loop bounds are no longer lin-
ear expressions of loop indices. A common way of expressing such
indirection is through index arrays such as, for example, array B in
the expression A[B[i]]. Code generators based on polyhedra scan-
ning are particularly restricted in the presence of non-affine loop
bounds or subscripts [3, 15, 21, 35, 43]. As a consequence, most
parallelizing compilers either give up on optimizing such computa-
tions, or apply optimizations very conservatively.

In this paper, we develop and evaluate novel compiler transfor-
mations and automatically-generated run-time inspectors that make
it possible to integrate loop and data transformations on sparse ma-
trices into a polyhedral transformation and code generation frame-
work. Some compiler approaches begin with a dense abstraction of
a sparse matrix computation; these compilers then generate sparse
data representations during code generation, placing a significant
burden on the compiler to optimize away the sometimes orders of
magnitude difference in performance between dense and sparse im-
plementations [10, 28, 34]. To our knowledge, the only prior com-
piler approach that starts with a sparse computation and derives new
sparse matrix representations is that of Wijshoff et al. [42]. They
convert code with indirect array accesses and loop bounds into
dense loops that can then be converted into sparse matrix code us-
ing the MT1 compiler [9, 12]. Sublimation is more restrictive, and
their work does not compare performance attained with manually-
tuned library implementations of either inspector or executor for
specific sparse matrix representations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’15, June 13–17, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3468-6/15/06...$15.00

http://dx.doi.org/10.1145/2737924.2738003

521

Other closely related work combines run-time inspection with
non-affine representations in a polyhedral transformation and code
generation framework, making possible non-affine transformations
and composability with standard transformations [44]. Our work
relies on the same techniques to extend polyhedral compiler tech-
nology, but additionally it systematically introduces new data rep-
resentations for the sparse matrices and the associated code trans-
formations to use the new representations.

For this purpose, we introduce three key transformations: make-
dense derives an equivalent computation that mimics the iteration
space of a dense computation, permitting downstream transforma-
tions to be applied; compact converts a dense iteration space back
to a non-affine, sparse one, after the desired transformations have
been performed; and, compact-and-pad additionally transforms the
data representation. A run-time inspector is used to locate nonze-
ros and optionally perform the data transformation. A key technical
challenge in this work is to automatically generate inspectors that
do not introduce significant run-time overhead.

This paper makes the following contributions: (1) develops new
compiler transformations for codes with indirection through in-
dex arrays that facilitates code and data transformations; (2) in-
corporates these into a polyhedral transformation and code gen-
eration framework so that these transformations can be composed
with other standard ones; and, (3) demonstrates that the perfor-
mance of the compiler-generated inspector and executor code per-
forms comparably to a manually-tuned specialized library: CUSP
for GPUs [8], and OSKI [46] for multicore processors.

The remainder of this paper is organized into five sections and
conclusion. We describe the transformations and inspector in the
next section, followed by a description of the compiler implemen-
tation. Section 5 applies the system to derive three common sparse
matrix representations and their associated code, and the perfor-
mance of the new representation is presented in the subsequent sec-
tion. Section 7 describes prior work in more detail.

2. Background and Motivation
Transformations on sparse codes with indirect array accesses re-
quire the generation of inspector code. In this section we describe
inspector/executor paradigms and how they can be combined into
polyhedral frameworks. We review the sparse matrix formats used
in this paper, and motivate the development of a small number of
loop transformations that can be combined with polyhedral trans-
formations to create optimized implementations for a number of
sparse matrix formats.

2.1 Inspector/Executor
A general technique to analyze data accesses through index arrays
and consequently reschedule or reorder data at run time employs
an inspector/executor paradigm whereby the compiler generates
inspector code to be executed at run-time that can collect the index
expressions and then an executor employs specific optimizations
that incorporate the run-time information [6, 31, 36, 37]. These
inspector/executor optimizations have targeted parallelization and
communication [36, 39] and data reorganization [17, 20, 30, 32,
50].

In this paper, we use the inspector for two purposes: to iden-
tify the locations of the nonzero entries in the sparse matrix, and
optionally, to perform the data transformation. The executor repre-
sents the optimized computation on the transformed data.

2.2 Incorporating into a Polyhedral Framework
Polyhedral frameworks describe the iteration space for each state-
ment in a loop nest as a set of lattice points of a polyhedron.
Loop transformations can then be viewed as mapping functions

A =

A: [1 5 7 2 3 6 4]
row: [0 2 4 6 7]
col: [0 1 0 1 2 3 3]

Compressed Sparse Row
 (CSR)

A: offsets: [-1 0 1]

DIA

1	 5	 0	 0	

7	 2	 0	 0	

0	 0	 3	 6	

0	 0	 0	 4	

0	 1	 5	

7	 2	 0	

0	 3	 6	

0	 4	 0	

Block CSR (BCSR)

A:

block-row: [0 1 2]
block-col: [0 1]

1	 5	

7	 2	

3	 6	

0	 4	

A: col:

ELL

1	 5	

7	 2	

3	 6	

4	 0	

0	 1	

0	 1	

2	 3	

3	 *	

Figure 1: Sparse matrix representations.

that convert the original iteration space to a transformed iteration
space providing the compiler a powerful abstraction to transform
a loop nest without being restricted to the original loop struc-
ture [18]. A separate dependence graph abstraction is used to pre-
vent applying individual transformations that do not preserve the
dependences in the program. The code corresponding to the trans-
formed iteration space may then be generated by polyhedra scan-
ning [3, 15, 21, 35, 43].

This transformation and code generation approach, widely used
in existing tools, is limited by the fact that the iteration space
sets and transformation relations must all have affine constraints.
We rely on the prior work in [44], which extends a polyhedral
framework to tolerate and manipulate non-affine loop bounds and
array access expressions using the abstraction of uninterpreted
function symbols, expanding on their use in Omega [21].

Strout et al. [41] extend the polyhedral model to represent data
and iteration reordering transformations on sparse codes, and they
present a prototype code generator for composed inspectors and
executors. These inspectors are more general but presumably less
performant than the specific inspector/executor transformations we
incorporate into an existing polyhedral framework in this work.

2.3 Sparse Matrix Formats
This paper primarily considers four sparse matrix representations,
as captured in Figure 1, and defined as follows:
• Compressed Sparse Row (CSR): CSR, which is used by the

code in Listing 1, represents only the nonzero elements in flat-
tened matrix A. The col array indicates the column correspond-
ing to each nonzero, but the row array has one element per row,
indicating the location of the first element for that row.

• Block CSR (BCSR): In BCSR format, the nonzero elements
are represented by a collection of small dense blocks, and the
blocks are padded where necessary with zero values. An auxil-
iary array tracks the row and column of the upper left element of
each nonzero block. The resulting interior computation can be
performed on a small dense array, for which high-performance
implementations are more easily obtained.

• DIA: The DIA format captures only the diagonals that have
nonzero elements. The offset auxiliary array represents the
offset from the main diagonal. It is well-suited for representing
banded matrices.

522

…

skew

shift

tile

Input
Loop Nest

make-dense

Enabling
Transformations

compact

Downstream
Transformations

Output	
Code	 scalar expand

unroll

datacopy

…

Data
Transformation

No

compact-and-pad
Yes

Loop	 Nest	
with	 dense	
iterator(s)	

guard	

Inspector	
Code	

Executor	
Code	

Figure 2: Overview of approach, showing how transformations are
incorporated.

• ELL: The ELL format uses a 2-dimensional matrix with a fixed
number of nonzeros per row, and rows with fewer nonzeros are
padded with zero values. An auxiliary col matrix tracks the
columns for the nonzeros as in CSR. When most rows have a
similar number of nonzeros, ELL leads to more efficient code
because of a fixed number of iterations and no indirection in the
loop bounds.

We will use CSR as the default matrix representation, and BCSR,
DIA and ELL as exemplars of the range of optimized sparse matrix
representations. We focus our comparison in this paper with two
manually-optimized sparse matrix libraries. OSKI tunes sparse ma-
trix computation automatically for a particular architecture, focus-
ing on identifying the best matrix representation given the architec-
ture and input matrix [46]. The CUSP library roughly matches the
manually-optimized parallel implementations of SpMV for GPUs
described in [8].

3. Overview of Approach
This section describes the new transformations make-dense, com-
pact, and compact-and-pad. Figure 2 illustrates how the new trans-
formations interact with each other and other transformations.

• First, make-dense takes as input any set of non-affine array in-
dex expressions and introduces a guard condition and as many
dense loops as necessary to replace the non-affine index expres-
sions with an affine access. The make-dense transformation en-
ables further loop transformations such as tiling.

• The compact and compact-and-pad transformations are
inspector-executor transformations; an automatically-generated
inspector gathers the iterations of a dense loop that are actually
executed and the optimized executor only visits those itera-
tions. The executor represents the transformed code that uses
the compacted loop, which can then be further optimized.

• In the compact-and-pad transformation, the inspector also per-
forms a data transformation, inserting explicit zeros when nec-
essary to correspond with the optimized executor.

These three transformations and automatic generation of an inspec-
tor combine polyhedral manipulation of loop iteration spaces and
constraints on statement execution with modification of the under-
lying abstract syntax tree to introduce new statements.

We implemented the new transformations and inspector within
the CHiLL and CUDA-CHiLL frameworks [38], which rely inter-
nally on CodeGen+ and Omega+ for polyhedral code generation.

For the purposes of this paper, both CHiLL and CUDA-CHiLL
take as input sequential C code and produce as output optimized
C or CUDA code. A script called a transformation recipe describes
the transformations to be applied to the code [19], produced either
by the compiler or by domain experts. Example scripts are shown
in the next two sections.

3.1 make-dense
Figure 3(a) presents before and after code templates for make-
dense, illustrating its effects on the control flow, loop bounds,
and array index expressions. The arguments of command make-
dense(s0,[idx1, . . . , idxm]) identify the statement and the index
expressions to which the transformation is to be applied. Each in-
put index expression is replaced with a corresponding dense loop
iterator, Ix1 , . . . , Ixm . These dense loops iterate over the range of
their corresponding index expression and are placed immediately
outside some loop Ik, where Ik is the innermost loop upon which
any of the m index expressions depend. As the set of index expres-
sion values may not be a continuous sequence, and as loop iterators
are continuous integer sequences, a guard surrounds the loop body
to compare the new dense iterators to the associated index func-
tions. Finally the non-affine index expressions are replaced by a
reference to the new loop iterator.

Although the transformed code after the make-dense transfor-
mation is executable unlike the sublimation approach in [42], typi-
cally we would not want to execute the code because it is not effi-
cient. Specifically, the entire dense range for each non-affine index
expression passed to make-dense is now being visited although the
guard ensures only the iterations from the original loop are exe-
cuted. However, make-dense is still useful as an enabling transfor-
mation because it enables tiling over the range of index expressions,
register tiling, and scalar replacement. In essence, make-dense re-
sults in a loop nest with more affine loop bounds and affine array
index expressions.

Safety Test: A conservative safety test for make-dense requires
that the only dependences carried by loops I1, . . . , Ik are due to
reduction computations [2]. This restriction is because the new
dense loops will iterate over the range of possible index expression
values in order, whereas the original loop potentially employs a
different order (e.g., if the nonzeros in each row i in Listing 1 are
not stored in order by column). If it is possible to prove that the non-
affine array accesses are monotonically non-decreasing [24, 33],
and therefore the iterations are not reordered, then this restriction
is not needed.

There are other requirements on the array index expressions and
the placement of the guard introduced by make-dense. Any index
expression where it is possible to compute its range is allowed as
input to make-dense. Additionally, the guard depends on the loops
I1, . . . , Ik and Ix1 , . . . , Ixm and therefore must be nested within
those loops and should surround the whole loop body.

3.2 compact
The compact transformation replaces a dense loop containing a
conditional guarding execution of its body with a sparse loop that
only visits the iterations where the condition is true. The com-
pact command takes as arguments the statement corresponding
to the loop body, and Ik, the loop level whose iterations are to
be evaluated against a guard. The transformed original code is
called the executor, as illustrated in the before-and-after code tem-
plate in Figure 3(b). The transformation also generates an inspec-
tor to pack the iteration values that satisfy the condition into array
explicit_index, shown in Figure 4(a). The compact transforma-
tion is similar to guard encapsulation [9].

523

(a)

make-dense(s0, [idx1, idx2, … , idxm])
for(I1)

 for(Ix1)

 for(Ix2)

 for(Ixm)
 for(Ik)
 if(Ix1 == idx1(I1, I2,…,Ik)
 && Ix2 == idx2(I1, I2,…,Ik)
 && …
 && Ixm== idxm(I1, I2,…,Ik))
 for(In)
 s0: …A1[Ix1]…
 …A2[Ix2]…
 …A3[Ixm]…

After for(I1)

 for(Ik)

 for(In)
 s0: …A1[idx1(I1,I2,…,Ik)]…
 …A2[idx2(I1,I2,…,Ik)]…
 …A3[idxm(I1,I2,…,Ik)]…

Before

(b)

for(I1)

 for(Ik-1)
 for(Ik)
 for(Ik+1)

 for(Ik+d)
 if(cond(Ik))
 s0: …X[Ik]…

for(I1)

 for(Ik-1)
 for(Ik’=offset_index[I1]…[Ik’-1]; Ik < offset_index[I1]…[Ik’-1+1];Ik’++)
 for(Ik’+1)

 for(Ik’+d)
 if(cond(explicit_index[Ik’]))
 s0: …X[explicit_index[Ik’]]…

Before After

compact(s0, Ik)

(c)

for(I1)

 for(Ik-1)
 for(Ik)
 for(Ik+1)

 for(Ik+d)
 if(cond(Ik))
 s0: …+=…A[…]*X[Ik]…

for(I1)

 for(Ik-1)
 for(Ik’=offset_index[I1]…[Ik’-1]; Ik < offset_index[I1]…[Ik’-1+1];Ik’++)
 for(Ik’+1)

 for(Ik’+d)
 s0: … += …A_prime[Ik’][Ik’+1]…[Ik’+d]*X[explicit_index[Ik’]]…

Before After

compact-and-pad(s0, Ik, A)

Figure 3: Templates for (a) make-dense, (b) compact and (c) compact-and-pad transformations.

Each of the outer loops of Ik: I1, . . . , Ik−1, are represented by
dimensions in offset_index. On iterations that satisfy the guard,
explicit_index records the original value of Ik, and is used in
place of references to Ik in the executor. Since the loop being
compacted, Ik may have inner loops (e.g., loops Ik+1 through Ik+d

in Figure 3(b)), the inspector needs to ensure that it only stores a
specific value of Ik once. The marked variable flags the presence of
a compacted loop iteration that satisfies the guard and ensures that
each such iteration is counted only once. After compact has been
applied the resulting code will have more non-affine loop bounds
and array index expressions.

An example where the compact transformation could be used
is in the construction of unaligned block compressed sparse row
(UBCSR) [47], GCSR [49], and doubly compressed sparse columns

(DCSC) [13], where only non-empty rows or columns are stored
for blocks of nonzeros in a sparse matrix.

Safety Test: The compact transformation is always legal because it
does not change the ordering of the iterations in the loop. It merely
replaces a dense loop iterator with a sparse one that has non-affine
loop bounds. While compact is safe, further transformations that
could have been applied to the previously affine loop bounds may
no longer be applicable to that loop level.

3.3 compact-and-pad
The compact-and-pad transformation generates a similar inspector
and executor to compact but additionally performs a data transfor-
mation. It takes as arguments the statement corresponding to the
loop body, and Ik, the loop level whose iterations are to be eval-
uated against a guard, and a single array A to which a data trans-

524

formation is to be applied. The before-and-after executor code and
inspector code are shown in Figures 3(c) and 4(b), respectively.
Inspector generation relies on the following definition:

Definition 1. For a given set of constraints S on a set of vari-
ables I1, . . . , In, Project(S, Ij) is defined as the set of reduced con-
straints obtained from S by eliminating every occurrence of vari-
able Ij from all (in)equalities in S using Fourier-Motzkin elimina-
tion, i.e. every pair of inequalities of the form lb ≤ c1Ij , c2Ij ≤ ub
is replaced by a new inequality c2lb ≤ c1ub.

Conceptually, the compact-and-pad inspector copies the foot-
print of the compacted iterations associated with a specified array A
into a transformed array A_prime that will be referenced in the opti-
mized executor code. The count of the compacted loop’s iterations
that satisfy the guard assumes the leading dimension of the newly
reorganized array, A_prime. When the compacted loop level is not
innermost, we use the inner loops’ (Ik+1, . . . , Ik+d) iteration space
to derive the size of A_prime. For each loop level j nested inside
Ik, the size of the dimension corresponding to that level is com-
puted as ubj − lbj + 1, where lbj ≤ Ij ≤ ubj and lbj and ubj are
the respective lower and upper bounds on the loop level Ij in the
set of constraints obtained from Project(S,Ik),. . .,Project(S,Ij−1).
That is, the outer loop constraints are projected into each inner loop
to derive the inner loops’ maximum loop bounds. These bounds are
then used to allocate the corresponding array dimension.

Additionally compact-and-pad might pad data elements with an
identity value (0 in the template) in A_prime to effect redundant
but harmless computation for associative operators. The inspector
can insert an identity value, particular to the type of operation, into
A_prime even on iterations that do not satisfy the guard. This allows
compact-and-pad to eliminate the guard condition in the executor
where compact would not, as illustrated in Figures 3(b) and (c). The
marked variable in compact-and-pad serves an identical function as
in compact.

Safety Test: Eliminating the guard condition in compact-and-pad
is unsafe if two distinct input iteration space vectors evaluate to
the same location in the array being transformed. Thus, compact-
and-pad aborts in the inspector if two distinct data entries being
inspected are mapped to the same array location. This is the injec-
tivity criterion. Any affine transformations that manipulate the loop
indices in the guard such that the injectivity criterion is violated
will cause compact-and-pad to fail. Further, padding and eliminat-
ing the guard relies on updates involving A_prime to be associative
and to have an identity value.

3.4 Example: CSR SpMV

1 for(i = 0; i < N; i++)
2 for(j = index[i];j < index[i+1]; j++)
3 y[i] += A[j]*x[col[j]];

Listing 1: CSR SpMV code.

1 for(i = 0; i < N; i++)
2 for(k = 0; k < N; k++)
3 for(j = index[i];j < index[i+1]; j++)
4 if(k == col[j])
5 y[i] += A[j]*x[k];

Listing 2: CSR SpMV after make-dense.

1 for(i = 0; i < N; i++)
2 for(k = offset_index[i]; k < offset_index[i+1]; k++)
3 y[i] += A_prime[k]*x[explicit_index[k]];

Listing 3: Executor for CSR SpMV.

(a)

Inspector template
(compact)

for(I1)

 for(Ik-1)
 for(Ik)
 marked = false
 for(Ik+1)

 for(Ik+d)
 if(cond(Ik))
 if(!marked)
 marked = true
 explicit_index[count] = Ik
 count++
 offset_index[I1]…[Ik-1 + 1] = count

(b)

Inspector Template
(compact-and-pad)

for(I1)

 for(Ik-1)
 for(Ik)
 marked = false
 for(Ik+1)

 for(Ik+d)
 if(cond(Ik))
 if(!marked)
 marked = true
 explicit_index[count] = Ik
 for(Ik’+1)

 for(Ik’+d)
 A_prime[count][Ik’+1]…[Ik’+d]=0
 count++
 A_prime[count][Ik+1]…[Ik+d] = A[…]
 offset_index[I1]..[Ik-1 + 1] = count

Figure 4: Templates for the run-time inspector for (a) compact and
(b) compact-and-pad (before optimizations in Section 4).

Applying make-dense and a subsequent compact-and-pad on
the SpMV code in Listing 1, based on the templates presented in
Figure 3, results in the executor code shown in Listing 3. This code
is roughly equivalent to the original CSR SpMV code.

3.5 Example: Traversing an Unstructured Mesh
The example input code in Listing 4 traverses over triangles in an
unstructured mesh and performs various operations by accessing
values associated with the three nodes of each triangular element.
The code has three distinct non-affine index expressions n1, n2 and
n3, and illustrates how make-dense and compact could be called on
multiple array index expressions and loop levels simultaneously.

Three outer loops are inserted by make-dense, as shown in List-
ing 5, with one corresponding to each indirect reference. The ex-
ecution is guarded with a logical conjunction over the conditions
corresponding to each loop level. Then, compact is subsequently
called with all three outer loops simultaneously specified to pro-

525

1 for (e=0; e<numelem; e++){
2 ... data[n1[e]] ...
3 ... data[n2[e]] ...
4 ... data[n3[e]] ...
5 }

Listing 4: Triangle code.

duce the inspector in Listing 6. Since all loop levels for compact are
continuous, they are treated as a single logical entity. The inspector
code records the value of each iterator that satisfies the guard, one
per compacted loop level. The inspector code in Listing 6 is further
optimized as outlined in Section 4.2. The optimized executor code
appears in Listing 7.

1 for(n3i=0; n1i < N: n3i++)
2 for(n2i=0; n2i < N: n2i++)
3 for(n1i=0; n1i < N: n1i++)
4 for (e=0; e<numelem; e++)
5 if(n1i==n1[e] && n2i==n2[e] && n3i==n3[e]){
6 ... data[n1i] ...
7 ... data[n2i] ...
8 ... data[n3i] ...
9 }

Listing 5: Triangle after make-dense.

1 count=0
2 for(n3i=0; n1i < N: n3i++){
3 marked_3 = false;
4 for(n2i=0; n2i < N: n2i++){
5 marked_2 = false;
6 for(n1i=0; n1i < N: n1i++){
7 marked_1 = false;
8 for (e=0; e<numelem; e++)
9 if(n1i==n1[e] && n2i==n2[e] && n3i==n3[e])

10 if(!(marked_3 && marked_2 && marked_1)){
11 marked_3 = true;
12 marked_2 = true;
13 marked_1 = true;
14 explicit_index_1[count] = n1i;
15 explicit_index_2[count] = n2i;
16 explicit_index_3[count] = n3i;
17 count++;
18 }
19 }
20 }
21 }

Listing 6: Inspector resulting from compact for Triangle.

1 for(i=0; i < count;i++){
2 ... data[explicit_index_1[i]] ...
3 ... data[explicit_index_2[i]] ...
4 ... data[explicit_index_3[i]] ...
5 }

Listing 7: Executor resulting from compact for Triangle.

3.6 Example: BCSR SpMV
Now let us examine how to use these transformations to modify
the matrix representation. The inspector copies from A to A_prime
to introduce additional zero-valued elements. We first apply make-
dense to the CSR input of Listing 1 and produce the code in Listing

2. To derive dense blocks of constant size R × C, we can tile the
output of make-dense, both the i and k loops, corresponding to the
rows and columns of the sparse matrix. The tiles are then the inner
loops (with j temporarily remaining as innermost loop), and the tile
controlling loops ii and kk permuted to the outermost positions.
This tiling is proven safe as it does not modify the direction of the
dependence on y. The associated transformation relation is:

T = {[i, k, j]→ [ii, kk, i, k, j]|
C ∗ kk + k < N && R ∗ ii+ i < N}

A subsequent compact-and-pad at loop level kk produces the
BCSR executor shown in Listing 9. The corresponding inspector
and CHiLL script for BCSR are shown in Listing 10 and Figure 5,
respectively.

1 for(ii = 0; ii < N/R; ii++)
2 for(kk = 0; kk < N/C; kk++)
3 for(i = 0; i < R; i++)
4 for(k = 0; k < C; k++)
5 for(j = index[ii*R + i]; j < index[ii*R+i+1]; j++)
6 if(kk*C + k == col[j])
7 y[ii*R + i] += A[j]*x[kk*C + k];

Listing 8: CSR SpMV after make-dense and tiling.

1 for(ii = 0; ii < N/R; ii++)
2 for(kk = offset_index[ii]; kk < offset_index[ii+1]; kk

++)
3 for(i = 0; i < R; i++)
4 for(k = 0; k < C; k++)
5 y[ii*R + i] += A_prime[kk][i][k]*x[C*explicit_index

[kk] + k];

Listing 9: Executor for BCSR SpMV.

make_dense(stmt,”j”,"k")

tile(stmt,”i”, R, 1, counted)
tile(stmt,”k”, C, 1, counted)

compact-and-pad(stmt,”kk”,”a”, “a_prime”)

--downstream transformations
--copy to temporary storage and
--fully unroll inner loops

datacopy(executor_stmt,”k”, x)
datacopy(executor_stmt, “i”, y)
unroll(executor_stmt,”k”, C)
unroll(executor_stmt, “i”, R)

Figure 5: CHiLL script for BCSR.

4. Optimization of Inspector and Executor
A key consideration in automating an inspector/executor approach
for sparse matrices, and a distinguishing feature of our work, is
to derive high-performance inspectors that perform comparably
to those used in manually-tuned libraries. In particular, we want
to avoid the inspector having to make several passes over the
sparse matrix or introduce significant additional work not present
in the original code. This section describes code generation and
optimization details for both the inspector and executor.

526

1 struct list_item{
2 float data[R][C];
3 int col;
4 struct list_item *next;
5 };
6 struct mk{
7 struct list_item *list_ptr;
8 };
9 offset_index[0] = 0;

10 count = 0;
11 struct mk marked[];
12 struct list_item *list=NULL;
13 for(ii = 0; ii < N/R; ii++){
14 for(i = 0; i < R; i++)
15 for(j = index[ii*R + i]; j < index[ii*R+i+1] ; j++){
16 kk = col[j]/C;
17 marked[kk].list_ptr = NULL;
18 }
19 for(i = 0; i < R; i++)
20 for(j = index[ii*R + i]; j < index[ii*R+i+1] ; j++){
21 kk = col[j]/C;
22 k = col[j] - kk*C;
23 if(marked[kk].list_ptr == NULL){
24 struct list_item *new_entry =
25 malloc(sizeof(struct list_item));
26 for(i_ = 0; i_ < R; i_++)
27 for(k_ = 0; k_ < C; k_++)
28 new_entry->data[i_][k_] = 0;
29 new_entry->col = kk;
30 new_entry->next = list;
31 list = new_entry;
32 marked[kk].list_ptr = new_entry;
33 count++;
34 }
35 marked[kk].list_ptr->data[i][k] = A[j];
36 }
37 offset_index[ii+1] = count;
38 }

Listing 10: Optimized inspector for BCSR SpMV.

4.1 Dynamic Memory Allocation and Reduced Traversals
(Inspector)

The size of the new matrix representation cannot be determined
statically. However, traversing the input to compute the size, as is
done in OSKI, is expensive as it requires two passes over the input:
one for initialization of an auxiliary data structure, and another to
traverse and count the number of nonzeros.

To minimize the number of traversals over the input, we utilize
dynamic memory allocation to create a linked list of nonzero ele-
ments or blocks when they are discovered by the inspector or use
static memory allocation when the size is known a priori, such as in
ELL. This allows us to copy the data associated with the nonzeros
while counting them in a single effective pass over the input ma-
trix. Despite the overhead of subsequently copying the linked list
into an array, this approach is faster than using two separate passes,
as will be shown in Section 6.

4.2 Derivation of Closed-Form Iterators (Inspector)
The unoptimized inspector code resulting from the compact and
compact-and-pad transformations retains the loops and the guard
from the input code. Since the make-dense command introduces
additional loops to the executor and compact or compact-and-pad
are typically applied after make-dense and other enabling transfor-
mations, the inspector’s traversal over the resulting iteration space
can be expensive. To reduce the overhead associated with the in-
spector, we replace these loop iterators with closed-form expres-

sions wherever possible. The main idea behind this optimization is
to compute the maximal set of loop iterators that can be derived
from other iterators based on the guard condition for compact.

We utilize the rich set of polyhedral functions, such as variable
projection and elimination, provided by the Omega+ library to ac-
complish this. The guard conditions (typically those introduced by
make-dense) are encoded as equality constraints involving loop in-
dex variables, and all possible orderings of the loop index variables
involved in the guard condition are considered to determine how
to eliminate the maximum number of inner loops in the order. The
guard condition is progressively updated with the eliminated vari-
ables being replaced with the corresponding expressions. A vari-
able can be eliminated if present in the set of equalities of the cur-
rent guard.

One of the patterns our algorithm detects is variables that are
multiplied by some constant and then summed with a variable
whose constant range is defined by the same constant (e.g., the kk*C
+ k == col[j] condition in Listing 8). Generally, if we have the
constraints v ∗ c +m = e and 0 ≤ m < c, where c is a constant,
v and m are iterators, and e is some expression, then a closed-form
expression for v is v = be/cc used in conjunction with terms being
multiplied by that constant range.

For example, consider the sample guard condition kk*C + k ==
col[j]. The bounds on the k loop are 0 ≤ k < C and if the kk
loop is the candidate for elimination, the k loop is replaced as an
existential leading to the constraints below:

I = {[j, kk] | (∃k : C ∗ kk + k = col(j) ∧ 0 ≤ k < C)}
We observe the existence of a closed form solution for kk is

bcol[j]/Cc and eliminate the kk loop in the inspector (see lines
28 and 33 in Listing 10). Once kk is derived, its solution can be
substituted into the set of constraints to yield further loop iterators
such as k, where k is col[j]-C*kk, which would be uncovered
by checking for equalities in the modified guard constraint. Hence
both these loops may be eliminated from the inspector code. The
optimized code with the loops and guard condition eliminated and
replaced with assignments as functions of the sparse iterator is
shown in Listing 10.

4.3 Elimination of Loops (Executor)
The additional loops introduced by the make-dense transformation
make it imperative for the compact and compact-and-pad transfor-
mations to eliminate the additional loop(s) and/or guard introduced
to minimize the run time of the executor code.

Redundant loops in the executor can be identified from consid-
ering the guard condition and the loop(s) being compacted. Let us
assume that the input code for compact (or equivalently, compact-
and-pad) is an n-deep loop nest of the form I1, . . . , In and a par-
ticular loop level Ij is a candidate for compaction and elimination
from the executor. The Ij loop may be eliminated if: (1) the guard
is satisfied on all iterations of Ij ; and, (2) an injective function F
exists such that on each iteration of Ij that satisfies the guard, F
maps that iteration to a unique tuple formed from the other itera-
tors. This function is explicitly constructed in the inspector code
for compact.

1 for(i = 0; i < N; i++)
2 for(k = offset_index[i]; k < offset_index[i+1]; k++)
3 y[i] += A[col_inv[k]]*x[explicit_index[k]];

Listing 11: Executor code for CSR SpMV from compact

In Listing 11, the optimized executor code is shown with the
j loop removed. The reference to the j loop in the array A, is
now derived from k, using col_inv, which represents the injective
function F. The redundant loops being eliminated from the executor

527

are distinct from the required loops whose closed form expressions
are being derived in the inspector.

5. Parallel GPU Implementations
We now describe two parallel implementations targeting Nvidia
GPUs, which extend the work of Venkat et al. to examine imple-
mentations that require new matrix representations and will be used
to compare with manually-tuned CUSP [44].

5.1 DIA
To uncover the diagonals that are implicit in the SpMV CSR for-
mat, the make-dense command is used to convert the iteration space
of the sparse computation to its corresponding dense one, as we did
for BCSR. After this transformation we skew the resulting dense
loop k by k=k-i and permute the i and k loops to obtain the code
in Listing 12. The transformation relations are as follows:

T = {[i, k, j]→ [i, k − i, j]}
T = {[i, k, j]→ [k, i, j]}

The outer k loop iterates over the diagonals that are numbered
from 0 to 2*N-1, while the inner i loop gives the maximum possi-
ble count of the number of elements in each diagonal. However,
since the matrix is sparse, the additional guard (k+i-(N-1) ==
col[j]) checks for the presence of the diagonal entry. Now the
compact command is called on the k loop, with the A matrix as
argument to eliminate diagonals with nonzeros. The final executor
code is shown in Listing 13.

1 for(k = 0; k<= 2*N-2; k++)
2 for(i = max(0,N-1-k); i <= min(N-1,2*N-2-k); i++)
3 for(j = index[i];j < index[i+1]; j++)
4 if(k+i-(N-1) == col[j])
5 y[i] += A[j]*x[k+i-(N-1)];

Listing 12: CSR SpMV after make-dense, skew and permute.

1 for(k=0; k < ub; k++)
2 for(i = 0; i <= N-1; i++)
3 y[i] += A_prime[k*N + i]*x[explicit_index[k]+i -(N

-1)];

Listing 13: Executor for DIA SpMV.

The CUDA-CHiLL script for DIA is shown in Figure 6. Fol-
lowing the make-dense and compact-and-pad commands, the in-
ner i loop is parallelized for threaded execution on a GPU. The
copy_to_shared command copies the diagonal offset matrix or the
explicit_index matrix into shared memory to exploit its reuse across
multiple threads, while the copy_to_registers command copies the
output y vector to an intermediate register to accumulate the rows’
dot products.

5.2 ELL
The ELL data format relies on determining the maximum number
of nonzero entries in a row for a sparse 2-D matrix and then
extending the other rows to that length. The number of nonzeros
per row in the initial SpMV CSR code is implicit in the loop
bounds. To make it explicit, the inner j loop is normalized to
give an exact count of the nonzeros in each row, using a non-
affine shifting transformation. The maximum row length M must be
supplied, or can be derived by additional inspection, and is used as a
tile size for the j loop. After compact-and-pad, the ELL executor is

make_dense(0,2,"k")
--enabling transformations
skew(stmt,"k",{-1,1})
permute(stmt,{"k","i","j"})

compact-and-pad(stmt,”k”,”a”,"a_prime”)

--downstream transformations
permute(executor_stmt,{"i","k"})
tile_by_index(executor_stmt,{"i"},{Ti},{l1_control="ii"},
{"ii","i","k"})
tile_by_index(executor_stmt,{"k"},{Ti},{l1_control="kk"},
{"ii","i","kk","k"})

cudaize(executor_stmt,"spmv_diag_GPU",{x=N,y=N},
{block={"ii"}, thread={"i"}}, {"a_prime", "_P_DATA2"})

--shared memory and register copy --optimizations for
GPU
copy_to_shared(executor_stmt,"k","_P_DATA2",-16)
copy_to_registers(executor_stmt, "kk", "y”)

Figure 6: CUDA-CHiLL script for DIA.

parallelized similarly to DIA, using a transposed matrix to achieve
global memory coalescing and a register copy to accumulate the
output results. As the non-affine shift is somewhat unique, we
include the transformation relations as follows.

T = {[i, j]→ [i, j − index(i)]}
{[i, j]→ [i, jj, j] |M ∗ jj + j < index(i+ 1)− index(i)}

6. Performance Results
The transformations described in Section 3 are used in the trans-
formation recipes such as in Figures 5 and 6 to derive optimized
BCSR, DIA and ELL matrix representations. These recipes include
further downstream transformations as were described in Sections 3
and 5 to derive the final corresponding optimized code variants.

We use two target platforms for this experiment. The BCSR
comparison focuses on optimizing for the memory hierarchy of a
node in a conventional multi-core architecture. For this purpose, we
use an Intel i7-4770 (Haswell) CPU with 256KB L1 cache, 1 MB
L2 cache, and 8MB L3 cache size. The system has 32GB of DRAM
memory. The DIA and ELL comparisons look at performance on
an Nvidia Tesla K20c Kepler GPU. The K20c has 13 Streaming
Multiprocessors with 192 cores per SM. It has 4800 MB of global
memory and a 64KB register file per streaming multiprocessor. All
CPU code is compiled with the icc compiler, version 15.0.0, and all
GPU code uses the nvcc compiler, version 6.5.

We compare BCSR performance to OSKI version 1.0.1h for the
same set of 14 matrices used by Williams et al.[48] and obtained
from the University of Florida Sparse Matrix Collection[16]. We
compare DIA and ELL performance to CUSP version 0.4.0 for
the same sparse matrices as in [8], structured matrices resulting
from standard discretizations of the Laplacian operator. The sizes
of these matrices range from 958,936 to 11.6 million nonzeros,
therefore sufficiently large to exceed the size of the last level cache
of the underlying machine.

We report the absolute performance for all implementations in
terms of GFlops. As sparse matrix libraries that convert to opti-
mized matrix representations also incorporate an inspector to derive
the new representation, we also compare against inspector times for
OSKI and CUSP. As is done in CUSP, the compiler-generated DIA
and ELL inspector code is executed sequentially on the CPU.

528

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

pw
tk	

ma
c_
ec
on
_fw

d5
00
	

pd
b1
HY
S	

sci
rcu
it	

rm
a1
0	

rai
l42
84
	

we
bb
ase
-‐1M

	

de
ns
e2
	

sh
ips
ec
1	

mc
2d
ep
i	

qc
d5
_4
	

co
p2
0k
_A
	
ca
nt	

co
ns
ph
	

Pe
rf
or
m
an

ce
/G

FL
O
PS
	

Matrices	

BCSR	 Executor	 Performance	

CHiLL	

OSKI	

0	
0.5	
1	

1.5	
2	

2.5	
3	

pw
tk	

ma
c_
ec
on
_fw

d5
00
	

pd
b1
HY
S	

sci
rcu
it	

rm
a1
0	

rai
l42
84
	

we
bb
ase
-‐1M

	

de
ns
e2
	

sh
ips
ec
1	

mc
2d
ep
i	

qc
d5
_4
	

co
p2
0k
_A
	
ca
nt	

co
ns
ph
	

Av
era
ge
	 Sp

ee
du

p	
ov
er
	 O
SK

I	

Matrices	

BCSR	 Inspector	 Speedup	

(a) (b)

Figure 7: Performance comparison of BCSR executor and inspector code with respect to OSKI.

6.1 BCSR
A performance comparison of the compiler-generated BCSR code
with OSKI is shown in Figure 7(a). We ran all configurations for
block size R × C (see Listing 9) in the range of 1 to 8 and report
the best-performing configuration for both OSKI and our compiler-
generated code. The compiler-generated codes are within 1% of the
performance of OSKI for the BCSR executor.

The inspector speedup, shown in Figure 7(b), compares the
overhead of converting from CSR to the BCSR representation.
On average the compiler-generated inspector is 1.5x faster than
OSKI’s. This is because OSKI does effectively four sweeps over
the input matrix: two to compute the number of nonzero R × C
blocks to allocate the memory accordingly and two more to actually
fill the nonzeros in the appropriate locations of the reorganized
matrix. We eliminate the first two sweeps over the input matrix by
simultaneously allocating memory dynamically as a linked list of
nonzero blocks and filling in the nonzeros. An additional traversal
is done to reset the data structure. Finally a sweep over the nonzero
blocks stored as a linked list is done to copy the data into an
array layout. Hence we accomplish the data reorganization in three
sweeps as opposed to four by OSKI.

For input matrices mc2depi and mac_econ_fwd500, BCSR
does not achieve any advantage over the CSR format for both OSKI
and our compiler. The extra costs associated with dynamic memory
allocation for every nonzero in the matrix is not amortized even by
the lesser number of traversals in our inspector code compared to
OSKI.

Comparing the inspector time for a particular matrix is fair only
when the same R×C configuration is picked across both as larger
R × C sizes lead to faster inspector times for a given matrix. In
cases where the best performing configurations of the executor
for both OSKI and ours were identical, such as for cant, consph,
qcd5_4, and shipsec1, we observe that our inspector is uniformly
faster than OSKI’s, due to fewer traversals over the input matrix.

6.2 DIA and ELL
Figures 8(a) and (b) compare performance of the DIA and ELL
executor code against that of the CUSP library. On average the
compiler-generated code is within 5% of the performance of CUSP
for both representations. The best-performing compiler-generated
versions are up to 6% faster than CUSP.

We observed that as the size of the stencil increases from a 3- to
27-point stencil, the performance of the CUDA-CHiLL code vari-
ant relative to its CUSP counterpart improves. CUSP outperforms
CUDA-CHiLL marginally for the 3- and 5-point stencils. This is

due to a subtle difference in the two implementations. In CUSP the
output vector storing the result of the matrix-vector multiply is as-
sumed to be zero; the inner product of each vector is accumulated in
a register, pre-initialized to zero, and then copied to the output vec-
tor. The code generated by CUDA-CHiLL has an additional global
memory read to initialize the result vector. This read overhead is
noticeable when the work per thread is relatively small, such as for
the low-order 3- and 5-point stencils. The performance advantage
of the code generated by CUDA-CHiLL on the other stencils is a
result of an IF-condition in the CUSP code checking if the column
entries are valid in the innermost loop. CUDA-CHiLL avoids this
inner conditional check by virtue of the inspector adding zeros into
the data representation. DIA outperforms ELL significantly, up to a
factor of 2×, because the DIA implementation reuses the elements
of the x vector and the offset vector, whereas ELL cannot.

Figures 8(c) presents the speedup for the automatically-generated
DIA inspector over CUSP, which is on average 1.27× faster. The
CUSP inspector initializes the entire DIA matrix in a single pass
prior to copying the nonzero entries in a separate pass, whereas the
CUDA-CHiLL inspector initializes and copies the data in a single
pass. Initializing and copying the data in a single pass is benefi-
cial to exploit temporal reuse of the initialized diagonal, if it is
copied into subsequently. This is the case for all matrices except
the 27-point stencil where the size of the last level cache is insuf-
ficient to exploit this temporal reuse. In the case of the 27-point
stencil, some of the initialized diagonals are flushed without being
reused for the data copy of the nonzeros. This result suggests that
we might improve inspector time for large matrices with numerous
diagonals if we could generate both versions of the inspector, and
use techniques such as autotuning, learning or additional inspectors
to decide which inspector is best for the input matrix.

Figure 8(d) examines the performance of the ELL inspector.
We show two bars, labeled Inspector and Inspector+Transpose.
To achieve global memory coalescing in the executor (i.e., adja-
cent threads accessing adjacent elements in memory), the CUSP
library performs the computation on a transposed ELL matrix
by declaring the ELL matrix to be in column major order. Our
compiler-generated implementation must perform an additional
transpose to achieve this same representation; alternatively, the
generated code would be equivalent if the programmer could pro-
vide the designation of column major order to the compiler. With-
out the cost of the transpose, the red columns in Figure 8(d), the
compiler-generated inspector achieves a speedup ranging from
0.52× to 1.26×. With the additional overhead of the transpose,
the automatically-generated inspector code is always slower than
CUSP, as the blue columns show speedups between 0.26× and

529

0	
10	
20	
30	
40	
50	
60	
70	

3p
t_1
00
00
00
	

5p
t_1
00
0x
10
00
	

7p
t_1
00
x1
00
x1
00
	

9p
t_1
00
0x
10
00
	

27
pt_
10
0x
10
0x
10
0	 Pe

rf
or
m
an

ce
/G

FL
O
PS
	

Matrices	

DIA	 Executor	 Performance	

CUDA-‐CHiLL	

CUSP	

0	
5	
10	
15	
20	
25	
30	
35	

3p
t_1
00
00
00
	

5p
t_1
00
0x
10
00
	

7p
t_1
00
x1
00
x1
00
	

9p
t_1
00
0x
10
00
	

27
pt_
10
0x
10
0x
10
0	 Pe

fo
rm

an
ce
/G

FL
O
PS
	

Matrices	

ELL	 Executor	 Performance	

CUDA-‐CHiLL	 	 	

CUSP	 	 	

(a) (b)

0	

0.5	

1	

1.5	

2	

3p
t_1
00
00
00
	

5p
t_1
00
0x
10
00
	

7p
t_1
00
x1
00
x1
00
	

9p
t_1
00
0x
10
00
	

27
pt_
10
0x
10
0x
10
0	 Sp

ee
du

p	
ov
er
	 C
U
SP
	

Matrices	

DIA	 Inspector	 Speedup	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	

3p
t_1
00
00
00
	

5p
t_1
00
0x
10
00
	

7p
t_1
00
x1
00
x1
00
	

9p
t_1
00
0x
10
00
	

27
pt_
10
0x
10
0x
10
0	 Sp

ee
du

p	
ov
er
	 C
U
SP
	

Matrices	

ELL	 Inspector	 Speedup	

Inspector	 +	 Transpose	

Inspector	

(c) (d)

Figure 8: Performance comparison of DIA and ELL inspector and executor code with respect to CUSP.

0.40×. As the size of the matrix increases, the inspector perfor-
mance relative to CUSP improves because the difference in layout
is less significant for large matrices. We have identified additional
optimizations to improve ELL inspector time that could be the
target of future work. First, we could combine the transpose with
the data layout transformation in a single sweep by permuting the
loops in the CSR code prior to compact-and-pad, incorporating the
knowledge of the fixed upper bound for the inner loop into account
to make this safe. Second, we can reduce loop overhead arising
from tiling by the fixed row width.

7. Related Work
This section expands on the discussions of prior work in Sections 1
and 2 to focus on the most closely-related compilers targeting
sparse matrix codes.

7.1 Sparse Matrix Compilers
Previous work has developed compiler optimizations for sparse ma-
trices beginning with a dense abstraction of a sparse matrix com-
putation, as optimizations for dense matrix computations are well
understood; these compilers generate sparse data representations
during code generation [4, 10, 28, 34]. These compilers either
incorporate a small, fixed set of matrix representations for which
code generation is straightforward or rely on the user to provide
implementations for accessing data in sparse formats for opera-
tions such as searching, enumeration and de-referencing. Shpeis-
man and Pugh [34] specify an intermediate program representation
for transforming sparse matrix codes. The specification directs an
underlying C++ library for efficient enumeration, permutation and
scatter-gather access of nonzeros stored according to some com-

pressed stripe storage. The Bernoulli compiler permits extension to
new formats by abstracting sparse matrix computations into rela-
tional expressions that describe constraints on the iteration space
and predicates to identify nonzero elements [22, 23, 28]. Using
an approach similar to optimizing relational database queries, the
compiler derives a plan for efficiently evaluating the relational ex-
pressions, and generates corresponding code. Gilad et al. [4] use
the LL functional language for expressing and verifying sparse ma-
trix codes with their dense analogs, under the assumption that the
matrix is dense initially.

In contrast to these compilers specialized for sparse matrix com-
putations, we have developed code and data transformations appli-
cable to non-affine loop bounds and subscript expressions within
a polyhedral framework, in conjunction with an automatically-
generated inspector. Existing non-affine code can be optimized in
this way with our compiler, and new matrix formats can be sup-
ported by applying the appropriate sequence of transformations.
Our work is also distinguished in demonstrating that the inspection
time is comparable to manually-tuned libraries.

7.2 Sublimation and Guard Encapsulation
The make-dense transformation is similar to sublimation presented
by van der Spek et al. [42]. Sublimation requires analysis or prag-
mas to determine injectivity properties of the access functions so
that the sublimation transformation can replace an existing loop
with irregular bounds (like the inner loop in SpMV) with the dense
loop. Additionally, a related idea of expanding a sparse vector into
a dense vector is called access pattern expansion [11].

The compact transformation we present is related to guard
encapsulation [9], which moves tests for elements into the loop

530

Table 1: A list of transformations performed for each variant.

Enabling Transformations Downstream Transformations
make-dense permute skew shift tile compact compact-and-pad datacopy scalar-expand unroll coalesce

ELL 3 3 3 3

DIA 3 3 3 3

BCSR 3 3 3 3 3 3

GCSR 3 3

TRI 3 3

CSB 3 3 3 3 3

S-DIA 3 3 3 3 3 3 3

bounds; in addition, compact-and-pad rewrites the matrix into a
new representation and performs optimizations on the inspector.

Further, we have incorporated our transformations into CHiLL,
which enables compositions with other polyhedral transformations
and compiler-based auto-tuning within a broader context. We have
designed these transformations to also generate optimized inspec-
tors that match or beat existing hand-written inspectors in libraries.

8. Conclusions and Future Work
This paper has presented three new transformations and an
automatically-generated inspector that can be used to transform
sparse matrix computations and their data representations. The
compiler-generated inspector and executor code achieves perfor-
mance that is comparable and sometimes exceeds the performance
of popular manually-tuned sparse matrix libraries OSKI and CUSP.
We see this work as an important step towards a general framework
for automating transformation and data representation selection for
the domain of sparse matrix computations.

To clarify the scope of the effort, and the power of incorpo-
rating these transformations into an existing compiler framework,
Table 1 shows sparse matrix formats that can be derived using our
framework, with BCSR, DIA and ELL the subject of this paper.
We see that a rich set of transformations are needed, both to enable
the restructuring of the code and matrix representation following
make-dense, and to generate optimized code for our two target ar-
chitectures.

The formats highlighted in grey, GCSR and TRI from Section 3,
Compressed Sparse Block (CSB) [1] and S-DIA [27] can also be
derived using the transformations we introduced. CSB [1] relies
on blocking the dense matrix into square tiles and determining the
nonzeros that fall within each tile. The nonzeros are then stored in
a Coordinate (COO) format as in [44], where the row and column
offsets within the tile are stored explicitly. S-DIA [27] relies on
storing blocked diagonals and may be conceptualized as a hybrid
between BCSR and DIA, and is derived similarly to DIA, with the
addition of tiling.

Many different sparse matrix representations have been devel-
oped recently to exploit structural properties of the matrices when-
ever possible to improve code performance. In the future, we see
the need to extend the inspector in our framework to support two
new capabilities to be able to implement new sparse matrix repre-
sentations. First, a number of representations require reorganizing
the sparse matrix by sorting of the rows and/or columns of the input
matrix, usually to expose locality [25, 40]. Other representations
split the matrix into multiple parts with different characteristics,
and use a different implementation for each part [7, 29, 45]. Incor-
porating sorting and splitting to implement hybrid schemes is the
subject of future work.

Acknowledgments
The work at University of Utah was partially supported by the Na-
tional Science Foundation award CCF-1018881 and by the Scien-

tific Discovery through Advanced Computing (SciDAC) program
funded by U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research under award number DE-FG02-
11ER26053. The work at Colorado State University was supported
by a Department of Energy Early Career Grant DE-SC0003956.

References
[1] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang. Optimizing sparse

matrix-multiple vectors multiplication for nuclear configuration inter-
action calculations. In Proceedings of the 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS ’14,
2014.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann Publishers,
2002.

[3] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Apr. 1991.

[4] G. Arnold, J. Hölzl, A. S. Köksal, R. Bodík, and M. Sagiv. Specify-
ing and verifying sparse matrix codes. In Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), ICFP ’10, pages 249–260, New York, NY, USA, 2010.
ACM.

[5] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.1, Ar-
gonne National Laboratory, 2010.

[6] A. Basumallik and R. Eigenmann. Optimizing irregular shared-
memory applications for distributed-memory systems. In Proceedings
of the Symposium on Principles and Practice of Parallel Program-
ming, 2006.

[7] M. Belgin, G. Back, and C. J. Ribbens. Pattern-based Sparse Matrix
Representation for Memory-Efficient SMVM Kernels. In ICS ’09,
pages 100–109, 2009.

[8] N. Bell and M. Garland. Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors. In Proceedings of SC ’09,
Nov. 2009.

[9] A. Bik and H. Wijshoff. On automatic data structure selection and
code generation for sparse computations. In U. Banerjee, D. Gelern-
ter, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, volume 768 of Lecture Notes in Computer Sci-
ence, pages 57–75. Springer Berlin Heidelberg, 1994.

[10] A. Bik and H. A. Wijshoff. Advanced compiler optimizations for
sparse computations. In Supercomputing ’93 Proceedings, pages 430–
439, Nov 1993.

[11] A. J. C. Bik. Compiler Support for Sparse Matrix Computations. PhD
thesis, Leiden University, May 1996.

[12] A. J. C. Bik and H. A. G. Wijshoff. Automatic data structure selection
and transformation for sparse matrix computations. IEEE Trans.
Parallel Distrib. Syst., 7(2):109–126, 1996.

[13] A. Buluç and J. R. Gilbert. Highly parallel sparse matrix-matrix
multiplication. CoRR, abs/1006.2183, 2010.

[14] A. Buluç and J. R. Gilbert. The combinatorial blas: Design, imple-
mentation, and applications, 2010.

531

[15] C. Chen. Polyhedra scanning revisited. In Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and
Implementation, PLDI ’12, pages 499–508, June 2012.

[16] T. Davis. The University of Florida Sparse Matrix Collection. NA
Digest, 97, 1997.

[17] C. Ding and K. Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 229–241, New York,
NY, USA, May 1999. ACM.

[18] P. Feautrier. Automatic parallelization in the polytope model. In The
Data Parallel Programming Model, pages 79–103, 1996.

[19] M. Hall, J. Chame, J. Shin, C. Chen, G. be Rudy, and M. M. Khan.
Loop transformation recipes for code generation and auto-tuning. In
LCPC, October, 2009.

[20] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific
codes. IEEE Transactions on Parallel and Distributed Systems, 17(7):
606–618, 2006.

[21] W. A. Kelly. Optimization within a Unified Transformation Frame-
work. PhD thesis, University of Maryland, Dec. 1996.

[22] V. Kotlyar and K. Pingali. Sparse code generation for imperfectly
nested loops with dependences. In Proceedings of the 11th Interna-
tional Conference on Supercomputing, ICS ’97, 1997.

[23] V. Kotlyar, K. Pingali, and P. Stodghill. A relational approach to the
compilation of sparse matrix programs. In C. Lengauer, M. Griebl, and
S. Gorlatch, editors, Euro-Par’97 Parallel Processing, volume 1300 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1997.

[24] Y. Lin and D. Padua. Compiler analysis of irregular memory accesses.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, May 2000.

[25] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient sparse
matrix-vector multiplication on x86-based many-core processors. In
Proceedings of the 27th International ACM Conference on Interna-
tional Conference on Supercomputing, ICS ’13, pages 273–282, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2130-3.

[26] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, Apr.
2012. ISSN 2150-8097.

[27] D. Lowell, J. Godwin, J. Holewinski, D. Karthik, C. Choudary,
A. Mametjanov, B. Norris, G. Sabin, P. Sadayappan, and J. Sarich.
Stencil-aware gpu optimization of iterative solvers. SIAM J. Scientific
Computing, pages –1–1, 2013.

[28] N. Mateev, K. Pingali, P. Stodghill, and V. Kotlyar. Next-generation
generic programming and its application to sparse matrix computa-
tions. In Proceedings of the 14th International Conference on Super-
computing, pages 88–99, Santa Fe, New Mexico, USA, May 2000.

[29] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector
product computations using unroll and jam. International Journal of
High Performance Computing Applications, 18(2):225–236, 2004.

[30] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory
hierarchy performance for irregular applications using data and com-
putation reorderings. International Journal of Parallel Programming,
29(3):217–247, 2001.

[31] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crow-
ley. Principles of runtime support for parallel processors. In Proceed-
ings of the 2nd International Conference on Supercomputing, pages
140–152, 1988.

[32] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array
references. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 192–202,
October 1999.

[33] C. Oancea and L. Rauchwerger. A hybrid approach to proving memory
reference monotonicity. In S. Rajopadhye and M. Mills Strout, editors,
Languages and Compilers for Parallel Computing, volume 7146 of
Lecture Notes in Computer Science, pages 61–75. Springer Berlin
Heidelberg, 2013.

[34] W. Pugh and T. Shpeisman. Sipr: A new framework for generating
efficient code for sparse matrix computations. In Proceedings of the
Eleventh International Workshop on Languages and Compilers for
Parallel Computing, Chapel Hill, North Carolina, August 1998.

[35] F. Quilleré and S. Rajopadhye. Generation of efficient nested loops
from polyhedra. International Journal of Parallel Programming, 28
(5):469–498, Oct. 2000.

[36] L. Rauchwerger and D. Padua. The lrpd test: speculative run-time par-
allelization of loops with privatization and reduction parallelization. In
Proceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation, PLDI ’95, 1995.

[37] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Roun-
tev, and P. Sadayappan. Code generation for parallel execution of a
class of irregular loops on distributed memory systems. In Proceed-
ings of SC’12, November 2012.

[38] G. Rudy, M. M. Khan, M. Hall, C. Chen, and C. Jacqueline. A
programming language interface to describe transformations and code
generation. In Proceedings of the 23rd international conference on
Languages and com pilers for parallel computing, LCPC’10, pages
136–150, Berlin, Heidelberg, 2011. Springer-Verlag.

[39] J. Saltz, C. Chang, G. Edjlali, Y.-S. Hwang, B. Moon, R. Ponnusamy,
S. Sharma, A. Sussman, M. Uysal, G. Agrawal, R. Das, and P. Havlak.
Programming irregular applications: Runtime support, compilation
and tools. Advances in Computers, 45:105–153, 1997.

[40] M. Shantharam, A. Chatterjee, and P. Raghavan. Exploiting dense
substructures for fast sparse matrix vector multiplication. Int. J. High
Perform. Comput. Appl., 25(3):328–341, Aug. 2011.

[41] M. M. Strout, A. LaMielle, L. Carter, J. Ferrante, B. Kreaseck, and
C. Olschanowsky. An approach for code generation in the sparse
polyhedral framework. Technical Report CS-13-109, Colorado State
University, December 2013.

[42] H. van der Spek and H. Wijshoff. Sublimation: Expanding data struc-
tures to enable data instance specific optimizations. In Proceedings
of the International Workshop on Languages and Compilers for Par-
allel Computing (LCPC), Lecture Notes in Computer Science, pages
106–120. Springer Berlin / Heidelberg, 2010.

[43] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation
in the real world. In Proceedings of the 15th International Conference
on Compiler Construction, Mar. 2006.

[44] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout. Non-affine
extensions to polyhedral code generation. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO ’14, 2014.

[45] R. Vuduc and H. Moon. Fast Sparse Matrix-Vector Multiplication
by Exploiting Variable Block Structure. In Proceedings of the High
Performance Computing and Communications, volume 3726 of LNCS,
pages 807–816. Springer, 2005. ISBN 978-3-540-29031-5.

[46] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of auto-
matically tuned sparse matrix kernels. Journal of Physics: Conference
Series, 16(1):521–530, 2005.

[47] R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Ker-
nels. PhD thesis, University of California, Berkeley, 2003.

[48] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms. Parallel Computing, 35(3):178 – 194, 2009.

[49] S. Williams, N. Bell, J. Choi, M. Garland, L. Oliker, and R. Vuduc.
Sparse matrix vector multiplication on multicore and accelerator sys-
tems. In J. Kurzak, D. A. Bader, and J. Dongarra, editors, Scientific
Computing with Multicore Processors and Accelerators. CRC Press,
2010.

[50] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen. Complexity
analysis and algorithm design for reorganizing data to minimize non-
coalesced memory accesses on gpu. In Proceedings of the 18th
ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’13, 2013.

532

	Introduction
	Background and Motivation
	Inspector/Executor
	Incorporating into a Polyhedral Framework
	Sparse Matrix Formats

	Overview of Approach
	make-dense
	compact
	compact-and-pad
	Example: CSR SpMV
	Example: Traversing an Unstructured Mesh
	Example: BCSR SpMV

	Optimization of Inspector and Executor
	Dynamic Memory Allocation and Reduced Traversals (Inspector)
	Derivation of Closed-Form Iterators (Inspector)
	Elimination of Loops (Executor)

	Parallel GPU Implementations
	DIA
	ELL

	Performance Results
	BCSR
	DIA and ELL

	Related Work
	Sparse Matrix Compilers
	Sublimation and Guard Encapsulation

	Conclusions and Future Work

