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Abstract—Many scientific applications are organized in a data
parallel way: as sequences of parallel and/or reduction loops. This
exposes parallelism well, but does not convert data reuse between
loops into data locality. This paper focuses on this issue in parallel
loops whose loop-to-loop dependence structure is data-dependent
due to indirect references such as A[B[i]]. Such references are
a common occurrence in sparse matrix computations, molecu-
lar dynamics simulations, and unstructured-mesh computational
fluid dynamics (CFD). Previously, sparse tiling approaches were
developed for individual benchmarks to group iterations across
such loops to improve data locality. These approaches were shown
to benefit applications such as moldyn, Gauss-Seidel, and the
sparse matrix powers kernel, however the run-time routines for
performing sparse tiling were hand coded per application. In
this paper, we present a generalized full sparse tiling algorithm
that uses the newly developed loop chain abstraction as input,
improves inter-loop data locality, and creates a task graph to
expose shared-memory parallelism at runtime. We evaluate the
overhead and performance impact of the generalized full sparse
tiling algorithm on two codes: a sparse Jacobi iterative solver
and the Airfoil CFD benchmark.

Keywords-inspector/executor, run-time reordering transforma-
tions, tiling

I. INTRODUCTION

Intranode parallelization is a difficult problem that many

libraries and programming models attempt to address [1]. To

expose parallelism in these programming models, scientific

simulations commonly express the application as a series of

data parallel or reduction loops. However, poor and unpre-

dictable data locality often limits performance and data reuse

among the loops is not effectively turned into data locality.

This is particularly true for irregular applications that access

data using an indirection array, such as A[B[i]]. These irreg-

ular accesses are common in such fields as computational fluid

dynamics, molecular dynamics, differential equation solvers

on unstructured meshes, and sparse linear algebra.

Sparse tiling techniques were developed to group iterations

of irregular applications into atomic tiles at runtime with

an inspector [2]–[5]. In general, the inspector iterates over

index arrays that do not change during the main computation

to determine data reorderings or new schedules, like sparse

tiling schedules. The resulting tiles have either an implicit or

explicit partial ordering (i.e., a task graph) that exposes asyn-

chronous parallelism [2], [6], [7]. These benchmark-specific,

sparse tiling executors exhibited performance improvements

for sparse stencil computations [2], Gauss-Seidel [3], [6],

moldyn [4], and sparse matrix powers kernel [5]. These

approaches were not general because the sparse tiling inspector

algorithms were developed by hand, per application.

In this paper, we present a generalized, full sparse tiling

algorithm that leverages a common pattern in irregular com-

putations and many other scientific codes: a series of parallel

and/or reduction loops that reuse data. Full sparse tiling was

called full because it segments the whole iteration space into

sparse tiles unlike other techniques that grew tiles that could

be executed in parallel, but then had a large cleanup tile [3].

Previous work introduces an abstraction called the loop

chain [8] to represent such loop sequences and the data access

information about each of the loops. Fig. 1 illustrates an

example extracted from an unstructured mesh, computational

fluid dynamics (CFD) program written using the OP2 [9]

library, where it is possible to derive a loop chain abstraction.

In the example, the first loop iterates over edges in a mesh,

reads data associated with each edge that is stored in the

x array, and then indirectly updates the value of the vert

data associated with the vertices adjacent to each edge using

the edges2vertices indirection array. The second loop

iterates over cells/triangles and updates all data associated with

vertices adjacent to each cell. Finally the third loop visits the

edges again. Each of these loops is reusing the data associated

with the vertices in the unstructured mesh and data access

patterns for each loop can be determined using the OP2 library

semantics. Fig. 2 shows a possible loop chain with data access

edges that are determined at inspector time.

Generalized full sparse tiling (or gFST) converts data reuse

within loop chains into data locality, while exposing task-graph

parallelism. Fig. 3 illustrates a full sparse tiling on the example

loop chain in Fig. 2. Note that the resulting task graph in Fig.

3 has two tiles/tasks that can be executed in parallel, Tiles 2

and 3. Larger examples result in significant improvements in

data locality while still exposing sufficient parallelism.

To prototype usage of the loop chaining abstraction as input

for a generalized full sparse tiling algorithm, we developed a

library where a programmer can replace a sequence of loops

with function calls that specify the computation as a loop

chain. In Fig. 1, the calls to op_par_loop can be replaced



1 void k e r n e l 1 ( double ∗ x , double ∗ v1 , double ∗ v2 ) {
2 ∗v1 += ∗x ; ∗v2 += ∗x ;

3 }
4 / / l oop over edges

5 o p p a r l o o p ( edges , k e r n e l 1 ,

6 o p a r g d a t ( x , −1, OP ID , OP READ) ,

7 o p a r g d a t ( v e r t , 0 , e d g e s 2 v e r t i c e s , OP INC ) ,

8 o p a r g d a t ( v e r t , 1 , e d g e s 2 v e r t i c e s , OP INC ) )

9

10 / / l oop over c e l l s

11 o p p a r l o o p ( c e l l s , k e r n e l 2 ,

12 o p a r g d a t ( v e r t , 0 , c e l l s 2 v e r t i c e s , OP INC ) ,

13 o p a r g d a t ( v e r t , 1 , c e l l s 2 v e r t i c e s , OP INC ) ,

14 o p a r g d a t ( v e r t , 2 , c e l l s 2 v e r t i c e s , OP INC ) ,

15 o p a r g d a t ( r e s , −1, OP ID , OP READ) )

16

17 / / l oop over edges

18 o p p a r l o o p ( edges , k e r n e l 3 ,

19 o p a r g d a t ( v e r t , 0 , e d g e s 2 v e r t i c e s , OP INC ) ,

20 o p a r g d a t ( v e r t , 1 , e d g e s 2 v e r t i c e s , OP INC ) )

Fig. 1: Section of an OP2 program that is used as a running

example to illustrate the loop chain abstraction and show how

the sparse tiling algorithm works. The definition of the toy

kernel1 shows how all kernels receive their input from the

op_par_loop implementation.

with calls to routines that indicate which loops are in the loop

chain and, for each loop, how each iteration in the loop chain

accesses data. At run-time this specification is passed to the

gFST inspector, which appends the specification with a task

graph and mapping of iterations in the loops to tiles/tasks

in that task graph. The executor, which replaces the original

computation, then executes that task graph. The ultimate goal

is to have a compiler identify loop chains within a program,

do a cost-benefit analysis to determine whether sparse tiling

would be beneficial, and insert inspectors and executors that

perform sparse tiling.

The performance benefits of sparse tiling [2], [6] and

specifically full sparse tiling [3]–[5] for irregular applications

such as Gauss-Seidel, moldyn, and sparse matrix powers

kernel have already been shown. Generalizing the full sparse

tiling algorithm can increase the inspector overhead, but the

improvements in the executor are similar to specialized full

sparse tiling executors. To further explore the performance

benefits of full sparse tiling, we applied it to Jacobi on

sparse matrices from the Davis Florida collection [10] and

an Airfoil simulation written in OP2. For the OP2 code,

we adapted the current parallelization algorithm to perform

a generalized full sparse tiling parallelization. We compared

the performance of these benchmarks when parallelized using

OpenMP parallel for pragmas on each loop versus

the performance when the loops were full sparse tiled. The

runtime reduction varied from 7% to 47%.

This paper’s major contributions are as follows:

• A general full sparse tiling algorithm that applies to any

sequence of loops that can be expressed using the loop

chain abstraction.

• Performance evaluations of the full sparse tiling inspec-

tor/executor strategy when applied to a Jacobi sparse

matrix solver and the Airfoil CFD simulation.

0 1 2 3 4 5

6 7 8 9

Loop 0 over edges: 

(Fig. 1: line 5) 

Loop 1 over cells: 

(Fig. 1: line 11)

Loop 2 over edges:

(Fig. 1: line 18)

10 11 12

0 1 2 3 4 222120

0 1 2

0 1 2 3 4

vert array

0:

1:

2:

Fig. 2: Visualization of a possible instance of the loop chain

for the sequence of loops in Fig. 1. The edge and cell loops use

index arrays to indirectly access the data associated with the

vertices in the mesh. Squares represent data associated with

vertices in a mesh. Circles represent loop iterations. Note that

iteration 0 in loop 0 visits the edge connecting vertices 0 and 6

and accesses the data associated with those vertices. Iteration

0 in loop 1 accesses all the vertices associated with the shaded

triangular cell. Iteration 0 in loop 2 accesses vertices 0 and 6.
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Fig. 3: A sparse tiling for the loop chain in Fig. 2. The

iterations in the three loops have been placed into four tiles,

which have been partially ordered into a task graph. The

partial ordering arises from dependencies between iterations

in different tiles.

We identify a number of important issues that arise when

generalizing full sparse tiling, and we explain how the general

algorithm deals with these issues. Additionally, we describe

how the key gFST algorithm concepts can be adapted for use

in the OP2 implementation context.

In Section II, we describe how data dependence relations

can be derived from the loop chain abstraction and indicate

issues related to these dependences that a general sparse tiling

algorithm must handle. These issues are addressed by the

general full sparse tiling algorithm described in Section III.

Section IV describes adapting the OP2 parallelization algo-

rithm to implement generalized full sparse tiling. Section V

reports performance results, Section VI covers work related to

full sparse tiling, and Section VII concludes the paper.

II. LOOP CHAINS FOR GENERALITY

Sparse tiling techniques have been developed to improve the

data locality within groups of iterations from different loops

that share data and, therefore, the performance of the overall

computation. Inspector/executor strategies implement sparse



tiling, where the executor is the transformed code with an

added tiling loop and the inspector is a new piece of code that

visits index arrays at runtime to determine how iterations can

be legally and profitably grouped into tiles.

This section reviews the loop chain abstraction, describes

how data dependences can be derived from a loop chain,

and presents issues that a general sparse tiling algorithm of

any kind must overcome. The issues are that (1) explicit

inspection of the data dependencies between loops to perform

sparse tiling more generally is too computationally expensive

(Section II-B), (2) when one or more of the loops being sparse

tiled are performing a reduction then there needs to be a

partial ordering between tiles that perform some reduction

operation on the same data element (Section II-C), and (3)

when growing tiles to some loop l, it is important to consider

the dependencies of loop l on all previous or all subsequent

loops (Section II-D). Dependencies in these parallel loops are

such that they can be from iteration in any loop Lp to iterations

in loop Lq where p < q in general.

A. Data Dependence Analysis for Loop Chains

The previous sparse tiling approaches cited in Section I were

specialized per benchmark. In this paper we show how the loop

chain programming abstraction [8] can be used as a basis for

generalized full sparse tiling. As with all loop optimizations

that reschedule the iterations in a sequence of loops, any

sparse tiling must satisfy the data dependencies. The loop

chain abstraction provides enough information to compute all

of the dependencies in a computation. When the data accesses

in the loop chain involve indirect memory accesses like those

that are the focus of this paper, the runtime, or inspector, can

determine the data dependencies by querying the data access

information contained in the loop chain abstraction.

As described in Krieger et al. [8], a loop chain consists of

the following:

• L is a sequence of N loops, L0, L1, ..., LN−1.

• D is a set of disjoint M data spaces, D0, D1, ..., DM−1.

• RLl→Dd
(~i) and WLl→Dd

(~i), where the R and W access

relations are defined over for each data space Dd ∈ D

and indicate which data locations in data space Dd an

iteration i ∈ Ll reads from and writes to respectively.

In our current implementation, iteration space specifications

are stored as ranges, data spaces as element size and number

of elements, and the read and write access relations are stored

implicitly if identity, explicit if through index arrays, and

using CSR-like structure if one iteration accesses zero or more

locations in an array. The assumption in a loop chain is that

each loop is a fully parallel loop or a reduction loop. Here a

reduction loop is more general than a scalar reduction loop.

In a reduction loop each iteration of the loop does a read, an

associative and commutative operation, and a write to some

element(s) in an array, and multiple iterations could read,

modify, write the same data element.

The access relations in the loop chain abstraction enable a

general derivation of the storage-related dependencies between

loops in a loop chain. The storage related dependencies

between loops can be described as either flow (read after

write), anti (write after read), or output (write after write)

dependencies. Loop Lx always comes before loop Ly in the

loop chain. The flow dependencies can be enumerated by

considering pairs of points (~i and ~j) in the iteration spaces

of the two loops Lx and Ly:

{~i → ~j |~i ∈ Lx ∧~j ∈ Ly ∧WLx→Dd
(~i) ∩RLy→Dd

(~j) 6= ∅}.

Anti and output dependencies are defined as expected.

There are reduction dependencies between two or more

iterations of the same loop when those iterations read, modify

with a commutative and associative operator, and write to the

same location(s). The reduction dependencies in loop Lx are

{~i → ~j |~i ∈ Lx ∧~j ∈ Lx ∧WLx→Dd
(~i)∩WLx→Dd

(~j) 6= ∅}.

The reduction dependencies between two iterations within the

same loop indicates that those two iterations must be executed

atomically with respect to each other.

B. Data Dependence Inspection Issue

With the computations that have been sparse tiled in the

past (Jacobi, Gauss-Seidel, moldyn, matrix powers kernel),

inspecting the dependencies between loops was implemented

by traversing index arrays. For example, in Jacobi, each

iteration of a loop accesses a set of neighbors. If the sparse

matrix is stored in compressed sparse row format then there is

a compact list of neighbor identifiers. By iterating over this list

the dependence relation is being inspected. The dependence

relation can be {[i] → [j] | j ∈ neighbors(i)}. The inspector

can traverse the domain for the i iterations and determine data

dependencies via the neighbor set.

More generally, traversing data dependencies between loops

might require more computation than is preferred in an inspec-

tor, which, after all, must be amortized over multiple iterations

of the loop chain. For example, the data dependencies between

the first edge loop and the cell loop for the running example

in Fig. 2 are

{[i] → [j] | edges2vertices(i, ∗) = cells2vertices(j, ∗)},

where ∗ indicates any of the index arrays into vertices for

edges or cells. Therefore if an edge and a cell share a vertex,

then there is a dependence from the edge iteration to the

cell iteration. Inspecting this relation requires a doubly-nested

loop that iterates over all edges and then for each edge all

cells, O(|E||C|), where |E| is the number of iterations in

the edge loop and |C| is the number of iterations in the cell

loop. In Section III, the generalized full sparse tiling algorithm

performs tile growth in O(|E|+ |C|) instead of O(|E||C|) by

avoiding the explicit traversal of data dependences.

Existing inspector/executor techniques for sparse tiling

avoid explicitly enumerating data dependencies between loops

by being specialized for specific computations. Wavefront par-

allelization techniques for do across loops also avoid explicit

enumeration of data dependencies by tracking how iterations

access data [11]. Sparse tiling techniques are different in

that they aggregate iterations into tasks and determine a



task graph instead of determining level sets containing fine

grained parallelism. We use a similar approach of tracking

data accesses to avoid explicit data dependence enumeration.

C. Handling Reductions

Strout et al. [4] sparse tiled the moldyn computation across

three of its loops. The loop over interactions between atoms

was a reduction loop. Due to reduction dependencies and the

resulting computation being performed serially, there was no

need to consider dependencies between tiles.

In general, reduction dependencies require that tiles per-

forming a reduction operation to the same data element

are given some arbitrary partial order to avoid concurrent

execution, which could lead to data races.

D. Dependencies from Non-Adjacent Loops

Existing sparse tiling techniques only inspect dependencies

between adjacent loops. This was because of symmetry be-

tween dependencies that caused the dependencies between a

loop and much earlier loops to be covered by the transitive

closure of dependence steps between intervening loops. In

general, a loop could have a dependence, for example an

anti dependence, on a loop that is not directly adjacent. The

generalized full sparse tiling algorithm handles this case.

III. GENERALIZED FULL SPARSE TILING ALGORITHM

To handle all the issues discussed in Section II, the general-

ized full sparse tiling algorithm uses the data access relations

provided by the loop chain abstraction and a data structure we

call Ψ that tracks all tiles that write to and read from each data

item in each loop to produce a valid execution schedule. Using

the given data access relations and the Ψ data structure, the

generalized algorithm is able to satisfy the ordering constraints

in the loop chain due to data dependencies.

A. Algorithm Description

The generalized full sparse tiling algorithm takes a loop

chain and assigns each iteration of the loops to a tile. Along

with the iteration-to-tile mapping, a task graph representing

a partial ordering of the tiles is generated. More precisely,

the input to the algorithm is a loop chain (LC), the index

of the loop chosen for seed partitioning (s), and the number

of tiles (T ). Note that any loop can be selected for seed

partitioning, but heuristically a loop in the middle of the loop

chain results in fewer dependencies between tiles [12]. The

number of tiles is a tuning parameter used to balance data

locality and parallelism. The output is a function θ that maps

each iteration of each loop in the chain to a tile and a task

graph G that captures the partial ordering among the tiles due

to data dependencies.

The general full sparse tiling method for loop chains con-

sists of four phases: initialization, backward tiling, forward

tiling, and task graph creation. Algorithm 1 shows the pseudo-

code.

Phase 1: Initialize internal data. Data dependency informa-

tion is required during task graph creation. Rather than track-

ing data dependencies directly, which may be prohibitively

1 GeneralizedFullSparseTile

Input: Loop Chain LC = (L,D,R,W ), s, T

Output: θ, G

Data: Ψ∗

2 // Initialize all fields of Ψ to top or empty set

3 // Initialize the tiling function θ values to ⊤
4 θ(Ls, ∗) = PartitionSeedSpace(Ls, R,W, T )
5 UpdateAccessTable(Ψ∗, s)

6 //Tile the loop chain

7 foreach Ll in Ls−1 to L0 do

8 BackwardTile(L, l, R,W, θ,Ψ∗))

UpdateAccessTable(Ψ∗, l)
9 end foreach

10 foreach Ll in Ls+1 to LN−1 do

11 ForwardTile(L, l, R,W, θ,Ψ∗)

UpdateAccessTable(Ψ∗, l)
12 end foreach

13 // Partial ordering of tiles

14 G = BuildTaskGraph(L,D,Ψ∗,T ) return θ,G
Algorithm 1: The Generalized Full Sparse Tiling Algorithm

expensive, the algorithm maintains information pertaining to

data reads and writes with respect to tiles. The set of tiles in

a particular loop (l) that read a particular data item (~v) in data

space (d) is denoted as ΨR(d,~v, l). The tiles that write are

tracked in a similar set ΨW (d,~v, l).

Additionally, tile data access information is used during

backward and forward tiling. Associated with each of the

ΨR and ΨW sets are single values that record the first and

last tiles that access a specific data element. ΨLR(d,~v, l) is

the last read performed on the vth data element of the data

space Dd from loop Ll. Replacing the subscripts with FR,

FW, and LW correspond to the first read, first write and last

write respectively. The initialization phase initializes all the

tile assignments to top (⊤) and sets all of the data access

information in Ψ to empty set or top as appropriate.

The initialization phase also includes a preliminary parti-

tioning of the seed loop’s iteration space, Ls. Partitioning

the seed loop involves assigning each iteration of the seed

loop to a tile. UpdateAccessTable updates the values in

all internal state data sets (Ψ∗) with respect to the seed

partitioning. Specifically, since there is a tile assignment for all

the iterations in the seed loop, it will be possible to determine

the set of tiles that read and write to each data element

accessed in that seed loop.

For example, Fig. 4 shows a portion of the Ψ data structure

for the loop chain example in Fig. 2. In this example, the seed

loop is chosen as loop 1. This is the loop over cells (a cell is

a triangle here). In this example we follow the creation of tile

2. After the seed partitioning, iterations 0 and 1 in loop 1 are

in tile 2, Θ(1, 0) = 2 and Θ(1, 1) = 2. The Ψ data structure

contains tile access information for each data element (i.e.,

vertices in the mesh) at each loop in the computation (i.e.,

note three columns for each vertex, one for each of the three

loops). The left side of Fig. 4 shows the initial write sets for
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Fig. 4: This figure illustrates part of the evolution of the ΨW

data structure for the loop chain example in Fig. 2. After the

initial seed partitioning of loop 1, which iterates over cells, the

middle columns (loop 1) associated with each vertex includes

the set of tiles for cells that are adjacent to the vertex. After

backward tiling, the ΨW data structure is updated to include

the tile numbers for all the edges that access a vertex in loop

1. Only one edge is in tile 2 in loop 0, so all vertices shown

are written to by edges in Tile 0.

part of the vert data structure. The first two cells have been

put into tile 2 in the seed partition loop. The vertices adjacent

to these two cells have a 2 in the center column to illustrate

that the tile 2 is in the sets ΨW (vert, 0, 1) and ΨW (vert, 1, 1).
The zeros in the middle columns of the Ψ table are for vertices

adjacent to cells that are in tile 0.

Phase 2: Backward Tiling. The result of tiling is that each

iteration in the loop chain is assigned to a tile. Backward

tiling (see Algorithm 2) starts with the iterations in the seed

partitions and grows tiles to earlier loops ensuring that the

data dependencies are satisfied. Each iteration in the loop

being tiled is assigned to either the existing tile assignment

or ΨFW (d,~v, l) or ΨFR(d,~v, l), depending on which occurs

first (the result of MIN ).

Consider the running example in Fig. 4. Backward tiling

in this example only occurs on loop 0. Iteration 0 in

loop 0 starts with a tile value of top, Θ(0, 0) = ⊤. It-

eration 0 in loop 0 does a reduction operation on two

vertices (0 and 6, the edge is represented as a bold,

dashed line) and we have ΨFW (vert, 0, 1) = 2 and

ΨFW (vert, 6, 1) = 2. Therefore, iteration 0 of loop 0 is

assigned to tile 2, Θ(0, 0) = 2. As another example, it-

eration 1 of loop 0 accesses the vertices 0 and 1, and

Θ(0, 1) = ⊤, ΨFW (vert, 0, 1) = 2, and ΨFW (vert, 1, 1) =
0. MIN(Θ(0, 1),ΨFW (vert, 0, 1),ΨFW (vert, 1, 1) is 0 and

therefore iteration 1 in loop 0 is assigned to tile 0, Θ(0, 1) = 0.

Intuitively any time an earlier loop iteration will be writing to

a data item that an iteration in a later loop accesses, then the

earlier loop iteration needs to be in the same or earlier tile.

Once the tile assignments are chosen, Ψ∗ is updated to

reflect the changes. These values are reflected in the first

1 BackwardTile

Input: LC, l,Ψ∗

Output: θ

2 Define: MIN(⊤,X) = X.

3 foreach ~i ∈ Ll do

4 // all datasets

5 foreach d ∈ D do

6 // all data elements read by this iteration

7 foreach ~v ∈ RLl→Dd
(~i) do

8 // each later loop’s access tables

9 foreach Lk ∈ {Ll+1 to Ls} do

10 // anti dependence

11 θ(l,~i) = MIN(θ(l,~i),ΨFW (d,~v, k))
12 end foreach

13 end foreach

14 // all data elements written by this iteration

15 foreach ~v ∈ WLl→Dd
(~i) do

16 foreach Lk ∈ {Ll+1 to Ls} do

17 // output dependence

18 θ(l,~i) = MIN(θ(l,~i),ΨFW (d,~v, k))
19 // flow dependence

20 θ(l,~i) = MIN(θ(l,~i),ΨFR(d,~v, k))
21 end foreach

22 end foreach

23 end foreach

24 end foreach
Algorithm 2: The Backward Tiling Algorithm

column of each vertex in Fig. 4.

Phase 3: Forward Tiling. In this phase, loops after the seed

space are tiled. This process starts with the iteration space

immediately following the seed loop and proceeds forward,

loop by loop, until reaching the last loop in the chain. The

forward tiling algorithm uses MAX where the backward

tiling algorithm uses MIN . It exploits the last read and write

information to ensure data dependencies are satisfied.

Phase 4: Task Graph Creation. The edges in the task graph

represent the data dependencies that occur between iterations

in different tiles (for example see Fig. 3). The four steps of the

task graph creation, as shown in Algorithm 3, correspond to

the four types of dependencies between tiles. To avoid cycles

in the task graph, the source tile of an edge should always be

numbered lower than the target tile for the edge.

Reduction dependencies are detected when a single entry

in the ΨW table includes multiple tiles, thus indicating that

multiple tiles are writing to a single vertex in the same

reduction loop. A partial ordering from the lower to higher

numbered tiles is placed in the task graph to avoid data

races. Edges representing flow dependencies are created by

connecting all tiles that read a specific data element within a

given loop to the tile that has most recently written to that

data element in a previous loop. Anti-dependence edges are

similar, but connect all of the tiles that read a given element in

a given loop to the first tile in a subsequent loop that writes to



1 BuildTaskGraph

Input: L,D,Ψ∗, T

Output: G = (V,E)
2 E = ∅, V = {0, 1, · · · , T − 1} // Each tile is task

3 foreach d s.t. Dd in D0 to DM−1 do

4 foreach l s.t. Ll in L0 to LN−1 do

5 foreach ~v ∈ Dd do

6 // Reductions

7 E = E ∪ {[s] → [t] | s ∈ ΨW (d,~v, l)∧

8 t ∈ ΨW (d,~j, l) ∧ s < t}
9 // Flow dependencies

10 foreach

k s.t. Lk in Ll to L0 until ΨLW (d,~v, k) 6= ⊤
do

11 E = E ∪ {[s] → [t] | s = ΨLW (d,~v, k)∧

12 t ∈ ΨR(d,~j, l) ∧ s < t}
13 end foreach

14 // Anti dependencies

15 foreach

k s.t. Lk in Ll to LN−1 until ΨFW (d,~j, k) 6=
⊤ do

16 E = E ∪ {[s] → [t] | s ∈ ΨR(d,~v, l)∧
17 t = ΨFW (d,~v, k) ∧ s < t}
18 end foreach

19 // Output dependencies

20 foreach

k s.t. Lk in Ll to LN−1 until ΨFW (d,~v, k) 6=
⊤ do

21 E = E ∪ {[s] → [t] | s = ΨLW (d,~v, l)∧
22 t = ΨFW (d,~v, k) ∧ s < t}
23 end foreach

24 end foreach

25 end foreach

26 end foreach
Algorithm 3: The task graph is determined by inspecting all

tiles that read and write to each data element.

the tile. Output dependences are found by connecting the last

write of a data element to the first write of the same element

in subsequent loops.

The generalized full sparse tiling algorithm maps each

iteration in the loop chain to a tile with the tile mapping

function θ and generates a partial ordering between the tiles

in the form of a task graph. One possible execution model

is to then execute each tile/task serially (loops executed in

the original loop sequence within each tile) and to execute

tiles/tasks that do not share a partial ordering in parallel.

B. Algorithm Complexity and Correctness

The backward (and forward) tiling algorithms traverse all

iteration and data index pairs in the read RL→D and write

WL→D relations. For each such pair, the impact of all previous

loops in the loop chain on the data item in question are

queried in the Ψ data structure (line 10 of the Backward

Tiling algorithm). Therefore the complexity is O(NMP )

complexity, where N is the total number of iterations in the

loop chain, M is the average number of data accesses per

iteration, and P is the number of loops in the loop chain.

Note that NM is the number of pairs in the read RL→D and

write WL→D relations. We avoid O(N2) behavior such as the

O(|E||C|) from Section II-B that would be needed if all data

dependencies between iterations were explicitly determined.

We do need to explicitly determine dependencies between

tasks to specify the task graph. The task graph construction

algorithm has a worst case complexity of O(T 2), where T is

the number of tiles, because all of the tiles could read or write

to a particular data element. However, if that were the case,

then the problem is not sparse enough for full sparse tiling to

be effective.

Any schedule for iterations in a loop chain is correct if

the schedule satisfies the partial ordering between iterations

in the loop chain dictated by the data dependencies detailed

in Section II-A. The gFST algorithm satisfies these data

dependencies by determining the dependencies between tiles

instead of iterations and by ensuring no tile dependence cycles.

IV. OP2 IMPLEMENTATION OF GFST

OP21 is a library for implementing applications that solve

partial differential equations over unstructured meshes. For ex-

ample, OP2 is employed in the Hydra CFD application, used at

Rolls Royce for the simulation of next-generation components

of jet engines, and in Volna [13], a CFD application for the

modelling of tsunami waves. These applications are composed

of a large number of parallel or reduction loops (hundreds in

Hydra, tens in Volna). This section describes how we adapted

the current OP2 parallelization algorithm to implement gen-

eralized full sparse tiling for OP2 programs. Inclusion of the

calls to the OP2 gFST inspector and introduction of tile loops

into the executor code is done manually. The goal is to assess

the performance of gFST in the context of a mature code base

like OP2, before incorporating this optimization into the OP2

compiler.

A. Loop chains in the OP2 Library

OP2 offers abstractions for modeling an unstructured mesh

in terms of sets, datasets and mappings between sets. OP2

programs are expressed as sequences of parallel loops, each

loop applying a user-programmed function, or “kernel”, to ev-

ery element in the iteration set. For each set element, datasets

are accessed through maps. For example, the parallel loops

in the program in Fig. 1 iterate over sets of mesh elements

(edges) and access datasets (vert) via mappings, which

can be indirect (edges2vertices) or direct (op_id).

In OP2, access modes are used to indicate how datasets

are being accessed: (1) OP_READ - the dataset is only read,

(2) OP_WRITE - the dataset is written to, (3) OP_INC - an

increment for each value of that dataset is computed without

reading the actual value of the dataset. An access descriptor

(op arg dat) contains: a dataset, a mapping and an access

1OP2 denotes that this is the second generation of the OPlus library, or
Oxford Parallel Library.



mode. Each parallel loop contains an access descriptor for

each dataset used by the kernel. This information captures the

loop chain abstraction in OP2.

B. Specializing gFST for OP2 Loop Chains

The standard OP2 OpenMP parallelization is done on a per

loop basis and is achieved by block partitioning the iteration

set (e.g. cells, edges). In the OP2 gFST inspector, instead,

partitioning occurs only once and is performed on the mesh

vertices. These partitions are grown to tiles in the backward

and forward tiling operations. In both cases, serialization

of iterations incrementing the same value (i.e., reduction

dependencies) is enforced by giving a color to partitions and

allowing only same-colored partitions to execute in parallel,

with iterations inside a partition being executed sequentially.

The OP2 gFST inspector extends this technique by coloring

partitions to respect tile-to-tile dependencies exposed by the

forward and backward tiling operations. The inspector builds

a seed partition graph (SPG) with each node of the SPG being

a partition of vertices. Edges are inserted in the SPG based on

the K-reachability relation between partitions: if two vertices

in separate partitions are within K edges or cells of each other

then their corresponding partition nodes in the SPG will be

connected. Building the SPG costs O(TN(BK)), where T is

the number of tiles, N is the number of vertices on the border

of a partition, B is the average out degree for vertices in the

mesh, and K is how many edges the depth-first search visit

traverses from each border vertex. In our examples B is 3 or

4, K is the number of loops in the loop chain and tends to

be small, and N is around 200. The SPG is then colored to

prevent same-colored tiles from sharing a dependence.

The gFST algorithm tracks all the tiles that read from and

write to a particular data item in each loop. This information,

stored in the Ψ∗ data structure, is used to determine a partial

order of tile execution due to data dependencies. The OP2

gFST simplifies dependency tracking by exploiting the fact

that vertices are accessible by all iteration set via mappings.

Instead of storing all the tiles that read and write to a particular

vertex per loop, it is only necessary to track the first tile that

reads or increments a vertex while doing backward tiling and

the last tile that reads or increments a vertex while doing

forward tiling. Specifically the complexity of the OP2 gFST

tile growth is O(NM) instead of O(NMP ), where where

N is the total number of iterations in the loop chain, M is

the average number of data accesses per iteration, and P is

the number of loops in the loop chain; the loop at Line 4 in

Algorithm 3 is unnecessary.

Adapting the existing OP2 parallelization algorithm to per-

form gFST highlights the most crucial aspects of the algorithm

while illustrating that these features can be specialized for

particular implementation contexts. The most crucial features

are (1) there needs to be some mechanism for providing a seed

partitioning, whether on an iteration space or a data space that

all iteration spaces access directly or indirectly, (2) flow, anti,

and output dependencies need to be respected during backward

and forward tile growth to maintain tile atomicity, (3) flow,

anti, output and reduction dependencies between tiles need to

be partially ordered to avoid data races.

V. EVALUATION OF GENERALIZED SPARSE TILING

To evaluate the performance improvements achieved by full

sparse tiling, we conducted several experiments. In all the

experiments, the optimal tile size (i.e. the one leading to

the best execution time) was determined empirically, for each

combination of machine and application. Our objective is to

explore the impact of gFST on performance, and to character-

ize the circumstances where the approach is profitable.

A. The Sparse Jacobi Benchmark

The first experiment was the full sparse tiling of a Jacobi

sparse matrix solver. Given a sparse matrix A, and a vector
~f , related by A~u = ~f , each iteration of the sparse Jacobi

method produces an approximation to the unknown vector

~u. In our experiments, the Jacobi convergence iteration loop

is unrolled by a factor of two and the resulting two loops

are chained together (1000 iterations of the loop chain was

executed). Using a ping-pong strategy, each loop reads from

one copy of the ~u vector and writes to the other copy. This

experiment was run on an Intel Westmere (dual-socket 8-

core Intel Xeon E7-4830 2.13 GHz, 24MB shared L3 cache

per socket). The code was compiled using gcc-4.7.0 with

options -O3 -fopenmp and OpenMP tasks were used to

execute the task graph.

The Jacobi recurrence equation includes a sparse matrix

vector multiplication and is representative of a broad class of

sparse linear algebra applications. It is also an effective testbed

because different data dependency patterns can be examined

simply by using different input matrices. In these experiments,

a set of 6 input matrices, drawn from the University of Florida

Sparse Matrix Collection [14], was used. The matrices were

selected so that they would vary in overall data footprint, from

45 MB to 892 MB, and in percentage of non-zeros, from very

sparse at 0.0006% to much more dense at 0.5539% non-zeros.

Figure 5a shows the execution time reduction achieved

by full sparse tiling the Jacobi solver compared with the

execution time of a simple blocked parallel version using

OpenMP parallel for directives on the unrolled loops.

The execution time reduction varied from 13% to 47% with

the exception of the nd24k matrix, which showed as much as

a 1.52x slowdown when full sparse tiled. This matrix is highly

connected and yields a task graph that has limited parallelism.

The greater parallelism available under a blocked approach

provides more benefit in this case than the performance

improvements due to improved locality from full sparse tiling.

These execution times do not include the inspection time

necessary to full sparse tile the loop chain. To break even

when this cost is considered, the inspector time must be

amortized over between 1000 and 3000 iterations of the

executor, depending on the specific matrix being solved. As

the inspector code matures and becomes more efficient, this

cost will diminish.
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Fig. 5: The Jacobi solver’s loop chain performance in terms of percentage reduction over the simple blocked parallel version,

and speedup over the sequential full sparse tiled versions. Results for 6 different sparse matrices are shown. The nd24k line

goes off the chart, reaching 2.5x slower at 15 cores; full sparse tiling does not always result in better performance.

In Figure 5b, the scalability of the full sparse tiled Jacobi

solver is shown. In general, speedups of between 8 and 12

times over the single-threaded performance were observed

when using 15 threads. A clear outlier is again the nd24k

matrix that did not scale past 3.2 times the single thread

performance. The high degree of connectivity present in this

matrix limited the parallelism available in the task graph,

which in turn limited the scalability.

B. OP2 Airfoil Benchmark

The OP2 adaptation of the generalized sparse tiling tech-

nique was evaluated in a representative unstructured mesh ap-

plication called Airfoil [15]. Three implementations of Airfoil,

namely omp, mpi and tiled, were compared on two shared-

memory machines, an Intel Westmere (dual-socket 6-core Intel

Xeon X5650 2.66 GHz, 12MB of shared L3 cache per socket)

and a more recent Intel Sandy Bridge (dual-socket 8-core Intel

Xeon E5-2680 2.00Ghz, 20MB of shared L3 cache per socket).

The code was compiled using the Intel icc 2013 compiler

with optimizations enabled (-O3, -xSSE4.2/-xAVX).

The OP2 Airfoil application consists of a main time loop

with 2000 iterations. This loop contains a sequence of four

parallel loops that carry out the computation. In this sequence,

the first two loops, called adt-calc and res-calc, constitute the

bulk of the computation. Adt-calc iterates over cells, reads

from adjacent vertices and write to a local dataset, whereas

res-calc iterates over edges and exploits indirect mappings to

vertices and cells for incrementing indirect datasets associated

to cells. These loops share datasets associated with cells and

vertices. Datasets are composed of doubles.

In the omp and mpi implementations of Airfoil, the

OpenMP and the MPI back-ends of OP2, were used. The

effectiveness of these parallelization schemes has been demon-

strated in [9]. The OP2 OpenMP back-end has been intuitively

described in Section IV. The tiled implementation exploits

the OP2 gFST library for tiling a loop chain composed of 6

loops: the time loop was unrolled by a factor of two so as to

tile over adt-calc and res-calc twice. The OP2 gFST library

uses METIS [16] for computing a seed partitioning of the

mesh vertices.

Figure 6 shows the scalability and runtime reduction re-

alized by full sparse tiling the loop chain on the Westmere

and Sandy Bridge machines. The input unstructured mesh

was composed of 1.5 million edges. It is worth noticing that

both the omp and tiled versions suffer from the well-known

NUMA effect as threads are always equally spread across

the two sockets. It is left as further work extending gFST

algorithms to work around this issue. Nevertheless, compared

to mpi, the tiled version exhibits a peak runtime reduction of

15% on the Westmere and of 16% on the Sandy Bridge.

Results shown for tiled do not include the overhead of the

inspector. By also including the inspector cost, the aforemen-

tioned improvements over mpi reduce to roughly 10% on both

platforms. However, as the time-marching loop in real-world

OP2 applications tends to be larger than in Airfoil, we expect

the overhead of the inspector to be, in general, smaller. In

addition, we believe the current implementation of the gFST

inspector is amenable to several optimisations.

C. Discussion of the Performance Results

The performance results presented here for Jacobi and

Airfoil support previous work demonstrating the benefits of

full sparse tiling [3]–[5]. Extending this approach by grouping

iteration that share data across loops into tiles improves perfor-

mance due to improved data locality. On multicore machines

this avoids memory bandwidth saturation while scaling.

Insufficient parallelism in the task graph can limit the

performance improvements. This is observed with the nd24k

sparse matrix in the Jacobi Benchmark. A possible future

method for increasing parallelism, when it is limited in the

task graph, is to take advantage of the parallelism within each

loop in each tile.

An additional limiting factor is inspector overhead. This

overhead must be amortized of the full execution. The effect

of this is limited in irregular scientific applications because

they typically require inspector-time partitioning already.

Choosing the correct input parameters to the tiling process is

key to achieving performance improvements. The parameters
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Fig. 6: The Airfoil’s loop chain performance in terms of execution time (in seconds) and speedup relative to the best sequential

execution time for Sandy Bridge(a,c) and Westmere(b,d). The speedup is evaluated with respect to the omp version with one

thread (i.e. the slowest sequential back-end).

include, the number of tiles, the iteration space to use as

the seed partition, and the numbering of the seed partition.

The quality of the seed partition and associated coloring is

especially important. Together these determine the degree of

parallelism in the task graph.

VI. RELATED WORK

Our definition of a loop chain was presented in [8] along

with a discussion of how the loop chain abstraction is compli-

mentary to previous projects that performed task scheduling in

order to achieve asynchronous parallelism. In essence, projects

that require manual task definition [17]–[20] may benefit from

the semantics of a loop chain. Additionally, loop chaining is

a general abstraction that allows for broader application than

abstractions tailored to specific applications [21] or with more

restrictive requirements such as iteration space slicing [22],

[23], which is applicable in regular codes.

For unstructured codes, there has been various inspector/ex-

ecutor strategies [24] that reschedule across loops to improve

data locality while still providing parallelism [2], [7], [25],

[26]. These methods include communication avoiding ap-

proaches [5] that optimize a series of loops over unstructured

meshes. These strategies fall under the broader category of

sparse tiling. In this paper we present a generalized sparse

tiling algorithm, whereas previous work was specific to par-

ticular benchmarks.

Various code transformation have been developed to

reschedule computation and reorder data for loop-chain-like

code patterns. Many of these techniques also generate parallel

execution schedules for the loops. The approach in [27]

identifies partitionable loops, and schedules these loops for

execution on a distributed memory machine. Likewise, there

are approaches that take parallel loops identified by OpenMP

pragmas and transform them for execution on distributed

memory clusters [28].

The approach presented in this paper differs from these

techniques in two key ways. First, these approaches generate

a schedule in which each partition or processing element

executes its assigned iterations of one loop, then communicates

a subset of its results to other partitions that are dependent

on that data. After executing its iterations of a loop, each

processing element potentially waits to receive data from other

partitions. The full sparse tiling approach described here does

not require any synchronization or communication during the

execution of a tile due to the atomicity of the tile. Before

a tile begins execution, it waits until all necessary data is

available and then executes from start to finish without further

communication or synchronization. This approach can better

exploit the locality available across the sequence of loops.

VII. CONCLUSIONS

Full sparse tiling has previously been shown to deliver

significant performance gains when applied ad hoc to specific



applications. In this paper, we present a generalized algo-

rithm for correctly sparse tiling any valid loop chain. This

algorithm uses the newly developed loop chain abstraction

as input, improves inter-loop data locality, and creates a task

graph to expose shared-memory parallelism at runtime. For

the sparse Jacobi benchmark, we showed that even though

the unoptimized, generalized inspector has high overhead,

the resulting executor has performance improvements. By

adapting the sparse tiling inspector for unstructured mesh

applications written using the domain-specific library OP2,

we see performance improvements over even MPI on the

Airfoil benchmark. These results add to the growing body of

evidence that sparse tiling techniques enable communication

avoidance and therefore improve parallel performance and

scaling on multicore architectures. Future work includes (i)

easing loop chain specification possibly through automatic

detection, (ii) exploiting parallelism within the sparse tiles,

(iii) optimizing the performance of the generalized full sparse

tiling algorithm and investigating other ways to specialize it

for each application domain, and (iv) automating the process

of tuning parameters to full sparse tiling.
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