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ABSTRACT
Scientific programmers strive constantly to meet performance
demands. Tuning is often done manually, despite the signif-
icant development time and effort required. One example is
lookup table (LUT) optimization, a technique that is gener-
ally applied by hand due to a lack of methodology and tools.
LUT methods reduce execution time by replacing computa-
tions with memory accesses to precomputed tables of results.
LUT optimizations improve performance when the memory
access is faster than the original computation, and the level
of reuse is sufficient to amortize LUT initialization. Current
practice requires programmers to inspect program source to
identify candidate expressions, then develop specific LUT
code for each optimization. Measurement of LUT accuracy
is usually ad hoc, and the interaction with multicore paral-
lelization has not been explored.

In this paper we present Mesa, a standalone tool that im-
plements error analysis and code generation to improve the
process of LUT optimization. We evaluate Mesa on a multi-
core system using a molecular biology application and other
scientific expressions. Our LUT optimizations realize a per-
formance improvement of 5X for the application and up to
45X for the expressions, while tightly controlling error. We
also show that the serial optimization is just as effective on
a parallel version of the application. Our research provides a
methodology and tool for incorporating LUT optimizations
into existing scientific code.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Patterns;
D.3.4 [Processors]: Code Generation, Compilers, Opti-
mization; G.1.2 [Approximation]: Special function ap-
proximations

General Terms
Performance, Languages
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1. INTRODUCTION
The computational needs of scientific applications are al-

ways growing, driven by increasingly complex models in the
physical and biological sciences. Scientific programs often
require extensive tuning to perform well on multicore sys-
tems. Performance optimization can consume a major share
of development time and effort [14], and software engineering
practices are sometimes ignored in the rush to attain perfor-
mance [12]. Manual tuning, including parallelization, is inef-
ficient and can obfuscate application code, making it harder
to maintain and adapt [10]. One solution is automated per-
formance tuning, which improves on manual methods by re-
ducing the programming effort and simplifying the code [7].

This paper examines a serial optimization that uses pre-
computed lookup tables (LUTs) to avoid computation. We
study LUT optimizations with Mesa, a standalone tool that
we have developed. Mesa supports the application of LUT
optimizations to existing code, without the loss of abstrac-
tion caused by manual tuning. The primary goal of Mesa is
to decrease the cost of LUT optimization while giving the
scientific programmer control of the tradeoff between accu-
racy and performance. Our secondary goal is to show that
LUT methods can improve the performance of scientific ap-
plications on multicore systems.

This work was motivated by a research collaboration with
the small angle X-ray scattering (SAXS) research project at
Colorado State University [1]. The SAXS software simulates
X-ray scattering of proteins using Debye’s formula, shown in
Equation (1).

I(θ) = 2ΣN−1
i=1 ΣNj=i+1Fi(θ)Fj(θ)sin(4πrθ)/(4πrθ) (1)

For performance evaluation of the SAXS code, we use en-
zymes from the Protein Data Bank (PDB), including the
1xib molecule, which has 3052 atoms. We defer a detailed
discussion of computational complexity to Section 4, but we
have measured ≈ 4.7 × 109 evaluations of the formula to
scatter the 1xib molecule. The SAXS scattering code there-
fore has a significant amount of computation in which we
have observed a large amount fuzzy reuse [3]. The initial
version of scattering code required more than 1.5 hours to
scatter the 1xib molecule. Removal of redundant code and
precomputation of scattering constants resulted in a 6X im-
provement on a 32-bit system. Porting the code to a 64-bit
system yielded another 3X improvement.



(a) 1xib molecule, which contains 3052 atoms.
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(b) Original and optimized scattering curves.

Figure 1: 1xib molecule and scattering curves.

The project goal was to scatter thousands of rotations
of various molecules. This raised the performance require-
ment, so we decided to investigate LUT methods. Table
optimizations date back to the early days of computing [4],
and are commonly used to optimize function evaluation in
hardware. Programmers often use LUT methods, but the
technical literature is very limited with respect to a software
methodology. Our initial LUT optimization was manual, so
we had to empirically determine the LUT size to meet the
required level of accuracy and performance. After extensive
experimentation we were able to gain an additional 7X im-
provement. We achieved these numbers despite a modest
table size of 3.2MB and average error of < 0.0014 percent.

Figure 1 shows the 1xib molecule and intensity curve.
Both the original and optimized curves are plotted, but the
difference between them is negligible and impossible to see
visually. To improve the process we developed the Mesa tool
to perform error analysis and automatic generation of LUT
optimization code for a broad range of scientific expressions.
Mesa, described in Section 3, allows us to characterize the
performance and accuracy of LUT optimizations.

In addition, we parallelized the SAXS scattering loop with
OpenMP, showing a further 1.8X improvement on a dual-
core, and 3.6X on a quad-core system. We conclude that
the benefit of LUT optimization applies equally to the par-

Table 1: SAXS scattering code improvements.

Run Cumulative Delta Version
Time Factor Factor Description

5365s 1X 1X Original code
872s 6X 6X Removed redundancy
279s 19X 3X 64-bit system and compilers
41s 131X 7X Manual table optimization
23s 233X 1.8X Parallel version, dual-core
13s 413X 1.8X Parallel version, quad-core

allel version, that is the single core and multicore optimiza-
tions are independent and complementary for this applica-
tion. Table 1 shows the progression of performance improve-
ments for the scattering code.

Current trends in computing platforms include the broad
availability of multicore hardware and a decrease in memory
access performance relative to processor performance. As a
result, the focus in scientific computing has shifted to paral-
lel execution and transformations that reduce the number of
memory accesses on multicore systems. However, single core
performance still remains important enough to justify con-
tinued study of optimizations that improve performance by
eliminating redundant operations. Such optimizations must
be evaluated to ensure that they remain effective when the
code is parallelized, as we have done in this paper.

Mesa makes the process of applying LUT optimizations to
existing code less costly and more repeatable. Our contri-
butions are as follows: (1) we show that that LUT optimiza-
tions can benefit scientific codes, (2) we present a tool for
the partial automation of LUT optimization, including error
analysis, and (3) we demonstrate that LUT optimization is
applicable in a multicore environment.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background information on LUT optimiza-
tion, Section 3 introduces the Mesa tool, Section 4 describes
case studies performed with Mesa, Section 5 gives details on
error analysis, Section 6 shows related work, and Section 7
presents our conclusions.

2. LUT APPROXIMATION
LUT optimizations represent continuous functions as sets

of discrete values, with each LUT access returning a stored
approximation of the original function. Increasing the num-
ber of LUT entries improves accuracy, but reduces the level
of reuse that occurs when different inputs share the same
LUT entry. Decreasing reuse causes an increase in the penal-
ties associated with memory usage, notably cache misses.
Thus LUT optimizations have an inherent tradeoff between
accuracy and performance. In this section we define how to
characterize the error introduced by LUT optimization.

LUT approximations introduce error because memory lim-
itations make it impractical to match the floating-point ac-
curacy of the processor. IEEE floating-point standards pro-
vide accuracy of ±1.19×10−07 for single-precision (SP) and
±2.22×10−16 for double-precision (DP). To match this pre-
cision for an input variable with a domain [0.0, 1.0] would
require a 32MB table for a float, and a 16PB table for a dou-
ble. The latter is clearly out of reach for modern computers,
even for limited domains.

We define a LUT approximation as a function l(x) with
identical parameters to the original function f(x), but less
accuracy. The l(x) function performs a table lookup by di-



viding the input value by LUT granularity and rounding it
to an integer LUT index. Each LUT entry defines an in-
put interval that maps to a single output value. The output
value for each LUT entry is computed by evaluating the ex-
pression for an input value in the interval. The ideal output
value is the average of the function over the input interval.
This is costly to compute so many LUT implementations
simply use the value at the interval center.

To evaluate accuracy, we need statistics that characterize
the magnitude of the introduced error. We refer to the com-
putation of error statistics for a LUT optimization as error
analysis, described in Section 5. The most basic statistic
is the error for an individual LUT access, computed as the
absolute value of the difference between l(x) and f(x), as
shown in Equation (2):

e(x) = |l(x)− f(x)| (2)

We can calculate maximum and average error statistics
based on the individual errors. The maximum error is im-
portant because it bounds the error imposed on the appli-
cation for a single LUT access. In the worst case, each LUT
access can produce the maximum error. We define the maxi-
mum error eMAX as the largest absolute error within a LUT
entry. We can combine the error terms for entries into a
maximum error EMAX for the entire table by iterating over
all eMAX to find the largest value. Error terms can be ab-
solute or relative. Absolute error is the magnitude of the
error term, and relative error is the error term divided by
the expected value. Both representations are used in this
paper, but relative errors are shown as a percentage.

In the best case, a LUT access exactly matches the orig-
inal function, so the minimum error is zero. The average
error is therefore bounded by zero and the maximum error.
If we assume a random distribution of LUT accesses within
an entry, then we can compute eAVG as the arithmetic mean
value of all outputs. If we assume an equal number of ac-
cesses to each LUT entry, then we can compute the average
error EAVG for the table as the mean of eAVG values. The
distribution of input data can vary widely, so the average
error is only an approximation.

The key parameter for a LUT optimization is the number
of LUT entries, since accuracy increases along with LUT
size. Figure 2 plots the error statistics on a log scale for the
function f(x) = x2, with a progression of LUT sizes. Graphs
like the one shown can help a programmer to select a LUT
size that meets the error requirements of the application.
Building the graphs requires extensive computation, so fast
error analysis is needed to automate LUT size selection.

3. MESA SOFTWARE
To make the process of LUT experimentation less cumber-

some, we have developed a software tool called Mesa that
automatically generates LUT optimization code for expres-
sions commonly found in scientific code. Mesa code is avail-
able for download and use under the BSD license [1].

3.1 Mesa Methodology
This section describes the workflow for applying a LUT

optimization with Mesa. As previously stated, the predom-
inant practice is to perform the steps shown below by hand.
The goal of Mesa is to automate the process as much as pos-
sible, although some of steps remain manual in the current
version.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10
0

10
1

10
2

10
3

10
4

L
U

T
 E

rr
o
r

LUT Size

Emax

(a) Maximum error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10
0

10
1

10
2

10
3

10
4

L
U

T
 E

rr
o
r

LUT Size

Eavg

(b) Average error

Figure 2: LUT error by LUT size for f(x) = x2.

1. The first step is expression identification, which is done
most effectively by manually running profiling tools.
The ideal candidate expression is a computationally
expensive function with high levels of fuzzy reuse, mean-
ing that the expression is evaluated with the same ap-
proximate inputs repeatedly. Once the programmer
has identified an expression, a specification file must
be written for Mesa.

2. The second step is to determine domains and distribu-
tions of the input variables for the candidate expres-
sion. In some cases the input domain is easy to infer,
otherwise this step require instrumentation of the tar-
get expression. The domain size is critical because it
affects LUT size, and the distribution determines the
level of reuse. The domain of each input variable must
be included in the Mesa specification file.

3. The third step is size specification, which currently
makes the user specify the LUT size on the command
line. This may require multiple Mesa runs to char-
acterize the error statistics before finding a favorable
LUT size. We also have a prototype of the system that
allows the user to specify a threshold for the maxi-
mum error on the command line, letting Mesa search
for the smallest LUT size that keeps the maximum er-
ror within the specified value. The future direction of
Mesa is automatic selection of LUT size based on error
constraints and system resources.



$ cat square . dat
va r i ab l e x 0 .0 5 .0 cente r ;
exp r e s s i on x ∗ x ;
$ Mesa square . dat opt imized . cpp 5 exhaust ive
Mesa , v e r s i on 1 .0
LUT opt imizat i on s t a r t ed
Input Parameter : x [ 0 . 0 0 , 5 . 0 0 ]
Lut s i z e : 5
Ana lys i s method : exhaust ive
Number samples ( per i n t e r v a l ) : 8388608
I n t e r v a l [ 0 . 0 0 , 1 . 0 0 ] emax : 0 . 75 , eavg : 0 .25
I n t e r v a l [ 1 . 0 0 , 2 . 0 0 ] emax : 1 . 75 , eavg : 0 .75
I n t e r v a l [ 2 . 0 0 , 3 . 0 0 ] emax : 2 . 75 , eavg : 1 .25
I n t e r v a l [ 3 . 0 0 , 4 . 0 0 ] emax : 3 . 75 , eavg : 1 .75
I n t e r v a l [ 4 . 0 0 , 5 . 0 0 ] emax : 4 . 75 , eavg : 2 .25
Table : Emax : 4 . 75 , Eavg : 1 .25
LUT opt imizat i on completed

Figure 3: Mesa specification file and output.

4. The fourth step is error analysis, which is fully auto-
mated in Mesa. The user invokes Mesa with command-
line arguments for the specification file (input), code
file (output), table size, and error analysis method.

5. The fifth step is code generation, which is fully auto-
mated in Mesa. Mesa generates LUT data or initial-
ization code for the LUT, along with the LUT approx-
imation function that replaces the original expression.

6. The sixth step is code integration, which requires the
user to include the generated code, call the initializa-
tion and deallocation methods on entry and exit, and
replace the original expression with a call to the ap-
proximation method. This introduces an extra method
call that can impact performance, but the user can sub-
stitute code from the approximation function directly
to avoid the call overhead.

7. The seventh step is to compare performance and accu-
racy. This is done by switching back and forth between
the optimized and original versions of the application,
comparing accuracy and performance. Accuracy can
be measured as a percentage difference between the
output of the original application, which is assumed to
be exact, and the output of the optimized application.

3.2 Mesa Operation
The input to Mesa is a specification file containing the

expression and declarations for each constant and variable
used by the expression. Input variables consist of a name
and a lower and upper value that defines the domain. Our
expression parser handles constants, variables, math oper-
ators (+,−, ∗, /) and library functions (sin, cos, tan, sqrt,
exp, log, fabs, fmod, pow). When Mesa is invoked from
the command line, it parses the specification file, optionally
performs error analysis, then generates LUT code. Figure 3
shows the specification file and a sample Mesa run for a LUT
to optimize the function f(x) = x2. The output shows that
exhaustive error analysis was requested, resulting in display
of maximum and average error terms for each entry and the
entire table.

Figure 4 shows the code generated by Mesa. Mesa reads
expressions from the specification file and builds a 1D LUT
for one independent variable or a 2D LUT for two indepen-
dent variables. SP values are used for LUT data, because

0 // Code generated by Mesa , vers ion 1.0
1
2 // Expression va r i a b l e s
3 f loat xLower = 0.00 e+00;
4 f loat xUpper = 5.00 e+00;
5 f loat xGran = 1.00 e+00;
6
7 // Orig ina l Expression
8 f loat Or ig ina l ( f loat x )
9 {
10 return ( x∗x ) ;
11 } ;
12
13 // LUT Create
14 vector<f loat> l u t ;
15 void Create ( )
16 {
17 for (double d=xLower ; d<xUpper ; d+=xGran )
18 {
19 l u t . push back ( Or i g ina l (d+(xGran / 2 . 0 ) ) ) ;
20 }
21 }
22
23 // LUT Destroy
24 void Destroy ( )
25 {
26 l u t . c l e a r ( ) ;
27 }
28
29 // LUT Approximation
30 f loat Lookup ( f loat x )
31 {
32 // Compute index
33 int uIndex = ( int ) ( x ∗ 1 .00 e+00 f ) ;
34
35 // Table access
36 return ( l u t [ uIndex ] ) ;
37 }

Figure 4: Optimized code generated by Mesa.

they provide sufficient accuracy for most LUT approxima-
tions, however the code could easily be changed to use a DP
representation. LUT optimization may be unreliable when
functions exhibit high frequencies, discontinuities, and other
abrupt changes in slope. Mesa detects these cases by com-
puting unacceptable error terms.

The generated code is C++ that uses an STL vector con-
tainer, however a simple modification to use dynamic arrays
would allow C compatibility. Support for other languages
such as Fortran can be added by rewriting a single method
within the Mesa implementation. Examining the generated
LUT code, we see the lower bound, upper bound, and gran-
ularity of each input variable declared as constants on lines
3-5. The original function on lines 8-11 is simply a recon-
struction of the expression from the specification file. The
LUT table is declared on line 14, initialized on lines 15-21,
and deallocated on lines 24-27. The LUT approximation
function is declared on lines 30-37.

4. CASE STUDIES
In this section we evaluate Mesa by optimizing the SAXS

molecular biology application and four scientific expressions.
For the application we compare solutions using 1D and 2D
LUT optimizations, which exhibit very different accuracy
and performance characteristics.

4.1 SAXS Project
For the SAXS project, we wrote software to evaluate the

Debye’s scattering formula, shown again in Equation (3).

I(θ) = 2ΣN−1
i=1 ΣNj=i+1Fi(θ)Fj(θ)sin(4πrθ)/(4πrθ) (3)



Table 2: SAXS performance and error comparison.

Protein Version Time Speedup EMAX EAVG
1xib Original 243.1s - - -

Optimized 49.8s 4.88x 0.0045% 0.0009%
1hbb Original 503.1s - - -

Optimized 101.7s 4.95x 0.0083% 0.0014%
4gcr Original 60.1s - - -

Optimized 12.4s 4.85x 0.0039% 0.0008%

The summations in the formula are implemented with a
doubly nested loop over the N atoms in a molecule. The for-
mula shown computes the intensity I(θ) for a single value of
the angle θ. To construct a scattering curve we must evalu-
ate the intensity for each of M different values of the scatter-
ing angle, thus the computational complexity of the entire
operation is approximately O(N2M). By inspection, each
evaluation of Debye involves multiple floating-point opera-
tions, including an expensive sine calculation. The number
of steps for the scattering angle defaults to 103, which we
have found provides a sufficiently detailed intensity curve for
the biochemists. To scatter the 1xib molecule, the formula
must be evaluated (3052)(3052)(103)/2 ≈ 4.7× 109 times.

In the code, Fi(θ) and Fj(θ) are precomputed constants.
This means the only independent variables are the scatter-
ing angle θ and the distance between atoms r. We can limit
the domain of both variables in order to maintain a reason-
able LUT size. The scattering energy falls off quickly, so θ
is restricted to less than 0.2 radians. The proteins we study
have distances r of less than 100.0 angstroms. The prod-
uct of the variables is duplicated in the expression, so we
can optimize further by multiplying the variables before we
evaluate of Debye’s formula. This allows the substitution
of a 1D LUT based on the product of r and theta, with a
domain of 0.0 to 20.0, instead of a much larger 2D LUT.

Table 2 shows performance and error rates for three PDB
molecules: 1xib, 1hbb, and 4gcr. The replacement of the
original formula with a LUT optimization increases the per-
formance of the entire application by ∼5X. The resulting
intensity values incur a reasonable error despite a modest
table size of 8 × 105(3.2MB) entries. Two more molecules
show a similar speedup due to the LUT optimization. The
performance numbers shown in Table 2 and throughout the
paper are measured on an Intel dual core Xeon E5405 pro-
cessor (family 6, model 23, 2.0GHZ) with a 256KB L1 cache,
6MB L2 cache, and 2GB memory, running Fedora Core 10.

4.1.1 SAXS Results (1D)
This section shows the result of applying Mesa LUT op-

timization to SAXS code, with a 1D LUT. The specifica-
tion file contains the Debye formula as the expression, along
with a constant pi and the domain-restricted variable rtheta,
which has a domain of [0.0, 20.0]. This variable represents
the product of r and theta from the original Debye’s for-
mula, which can be used to index a 1D LUT. The value of
automation is shown by the graphs in this section, which
were produced by running Mesa from a shell script that var-
ied LUT size and granularity.

Figure 5 shows the error statistics and performance num-
bers misses for the 1D optimization with different LUT sizes.
LUT size starts at 1 × 105 entries (400kb) and doubles in
size with each entry to 5.1 × 107 entries (200mb) in both
graphs. The LUT error for the expression decreases with
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Figure 5: SAXS error and performance (1D LUT).

LUT size, and both the maximum error EMAX and average
error EAVG are cut in half each time the LUT size doubles.
The difference between the maximum error and average er-
ror is approximately two orders of magnitude. Our results
confirm the expected relationship in which increasing LUT
size improves accuracy but reduces performance.

The performance graph shows the number of seconds to
execute the original code TORG along the top. The opti-
mized performance TOPT starts out around 5X faster than
the original, then decreases until it almost degrades to the
original performance on the last entry. We attribute the
dropoff in performance primarily to L2 cache misses, which
are shown in Figure 6. Statistics on L2 cache misses are
gathered with PAPI hardware performance counters [6]. The
PAPI library allows us to measure L1 and L2 cache misses,
resource stalls, and other relevant performance numbers.

The evidence for L2 cache misses as the primary cause of
the performance dropoff is as follows: (1) the performance
and L2 cache misses curve are close to the same shape, (2)
we observe that the dropoff in performance starts very close
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Figure 6: SAXS L2 cache misses vs. table size.

to the point where the LUT data fills the L2 cache, and (3)
we have analyzed SAXS 1D performance with PAPI without
finding other resource stalls that would explain the perfor-
mance decrease. In addition, the performance dropoff hap-
pens at the point where the LUT size exceeds the L2 cache
size on several different systems.

The performance graph also plots the LUT initialization
time TINI along the bottom, showing that LUT initializa-
tion is not a significant factor in the 1D LUT optimization.
The combination of error and performance graphs allow us
to select the optimal LUT size for the application. We also
parallelized the 1D LUT version of the code using OpenMP,
achieving an additional 1.8X on a dual-core or 3.6X on a
quad-core processor. This demonstrates that the LUT opti-
mization is relevant in the context of parallel execution on
a multicore system.

4.1.2 SAXS Results (2D)
A more straightforward LUT optimization of the Debye

formula would use the variables r and theta as independent
variables to create a 2D LUT. Figure 7 shows the error statis-
tics and performance numbers for the 2D optimization. The
magnitude of the error statistics match the 1D LUT, but
the memory footprint is 103 larger. Thus the combination
of these variables has apparently yielded an enormous ad-
vantage in memory footprint. This happens because both r
and theta are only used in the Debye expression within the
subexpression r times theta. As can be seen in Figure 8, the
expression r times theta has the same value along multiple
lines in the 2D LUT input space. The 2D LUT computes
outputs for all points along this line, but the 1D LUT opti-
mization computes values for only one point in each line.

The 2D optimization performance chart confirms the ef-
fects of the increased memory usage. Disregarding the error
terms, the performance for the smallest 2D LUT (56.2s) is at
a disadvantage as compared to the smallest 1D LUT (54.9s).
In contrast with the 1D case, the 2D LUT initialization time
causes the performance to degrade quickly, as shown in the
graph. In addition, PAPI shows a large increase in resource
stalls for the 2D optimization, even when we exclude LUT
initialization. The cause may be virtual memory penalties
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Figure 7: SAXS error and performance (2D LUT).
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Figure 9: Stochastic versus exhaustive sampling.

that occur when the LUT exceeds the size of system memory.
PAPI does not measure virtual memory penalties directly,
so all we can confirm is that some type of resource stall is
responsible, and that L1 and L2 cache misses are not the
direct cause. The 2D LUT appears to be impractical for the
SAXS implementation because of excessive memory usage.

4.2 Other Scientific Expressions
To generalize the result from SAXS, we gathered expres-

sions from several different scientific algorithms and created
LUT optimizations for them with Mesa. The algorithms in-
clude Gamma Correction, a color intensity adjustment com-
mon in computer graphics, Cauchy’s Equation, a refractive
index calculation from optics, the Normal Distribution, used
by many statistics programs, and the Logistic Curve, which
estimates population growth. Table 3 shows error statistics
and performance results for each expression.The EMAX and
EAVG statistics are computed by Mesa. An empirical mea-
surement of performance from Mesa is shown, including the
execution time of the original function tORG and optimized
function tOPT . The factor is the ratio of the original time
divided by the optimized time. This factor indicates how
much the expression evaluation performance will improve,
but does not predict the performance gain of the full appli-
cation, which will improve significantly only if one of these
expressions accounts for a major share of the execution time.

5. ERROR ANALYSIS
Error analysis provides the information needed to control

accuracy versus performance, a key tradeoff for LUT opti-
mizations. Mesa does error analysis by computing the LUT
error statistics defined in Section 2. Computation of error
statistics is implemented by comparing the LUT approxima-
tion to the original function across the entire domain. We
have prototyped three methods in Mesa for error analysis:
exhaustive, stochastic, and analytical.

The exhaustive method implements a numerical traversal
of LUT entries at a resolution of the minimum epsilon for SP,
but error terms are maintained in DP for accuracy. Error
values for all entries are accumulated to compute statistics
for the entire LUT. The stochastic method samples the input
domain randomly, the accuracy is dependent on the number
of samples. Stochastic sampling appears to converge towards

the same answer as the exhaustive method with many fewer
samples, as shown in Figure 9. This suggests that stochastic
sampling is more efficient. The analytical method computes
error statistics by evaluating the area between the original
and approximation functions. Mesa currently supports the
analytical method but requires the user to include the inte-
gral of the expression in the specification file. One limitation
of the analytical method is its failure to detect local minima
and maxima for the function, which can cause inaccurate
results. The analytical method is the fastest technique, so
future work is planned to resolve accuracy issues.

The literature shows numerous examples of error analy-
sis for hardware and software LUT optimizations [15, 8].
The assumption in this prior work is that table values are
precise, with interpolation or polynomial reconstruction for
the computation of accurate values in between table entries.
Our error analysis is unique because we omit interpolation
in favor of higher resolution tables. We do this to avoid in-
terpolation, which is costly in software. The ramifications
are that our technique uses more memory but less compu-
tation, and error terms are entirely dependent on LUT size.
As a consequence simpler expressions can benefit from op-
timization because of lower overhead, and performance is
limited more by memory usage than computation. Our ex-
perimental results show performance degradation when the
LUT data falls out of L2 cache, so our strategy is to make
the LUT into L2 cache if we can do so while ensuring the
required accuracy.

6. RELATED WORK
LUT optimization in hardware is commonly used to ac-

celerate the evaluation of elementary functions [15, 5], in-
cluding exponentials [5], logarithms [16], and trigonometric
functions [13]. Dedicated hardware memory is expensive, so
hardware LUT optimizations usually depend on interpola-
tion between table entries to limit LUT size.

LUT optimization in software has been used for many
years to reduce instruction counts. Hyde [9] discusses the
idea of optimizing performance by replacing computations
with table lookups. A recent paper by Zhang et al. [17] pro-
vides a starting point for exploring software LUT methods.
The work explores code generation for software LUT opti-
mizations on multicore systems. The compiler in the Zhang
et al. paper reads expressions from a specification file, in a
manner similar to Mesa. An important difference from our
work is that their algorithm depends on interpolation, thus
the authors conclude that LUT size is not a significant per-
formance limiter. Our experiments show that interpolation
is not always necessary, and LUT size may in fact be im-
portant. For this reason, we believe that more research is
required to quantify the tradeoff between memory usage and
interpolation overhead.

Other techniques for reusing function results include fuzzy
memoization [2, 3] and function memoization [11]. Fuzzy
memoization resembles LUT optimization in that an approx-
imation is used to increase reuse. Function memoization [11]
does not allow approximation, and is therefore applicable
only when identical inputs are repeatedly reused. Memo-
ization algorithms require a conditional to check whether
a result has been stored, and hashing is generally used for
table access. This differs from LUT optimization, which pre-
computes and stores results for the entire input domain in
advance of the calculation.



Table 3: Mesa performance on other scientific expressions.

Expression Expression Parameter Table Estimated Error Measured Performance
Name Description Domain Size EMAX EAVG tORG tOPT Factor

Gamma IΓ = I
(1/γ)
ORIGINAL intensity = 1.0 1.3 2.2 14.6 ns 0.34 ns 43x

Correction [0, 1] ×105 ×10−3 ×10−6

Cauchy’s i = 1.458 + (.00354/λ2) λ = 1.0 7.0 2.2 0.66 ns 0.17 ns 4x
Equation [0.0, 1.8] ×103 ×10−4 ×10−5

Normal Z = 1/
√

2πe(−x
2/2) x = 1.0 1.2 9.8 15.3 ns 0.34 ns 45x

Distribution [0, 10] ×105 ×10−5 ×10−7

Logistic P (t) = 1/(1 + e−t) t = 1.0 1.3 1.2 4.7 ns 0.17 ns 27x
Curve [0, 10] ×103 ×10−3 ×10−4

7. CONCLUSIONS
We have presented a methodology for LUT optimization

and an associated software tool called Mesa that provides
error analysis and code generation. By replacing manual
tuning, Mesa makes the application of LUT optimizations
less expensive and more reliable. We conclude that LUT
optimizations can improve the performance of scientific pro-
grams without requiring extensive manual tuning. LUT op-
timizations also appear to be effective in conjunction with
parallel execution on multicore systems. We have two future
directions for our research. The first is a comparison of the
direct table access method described in this paper against
linear interpolation, which provides more accuracy at the
cost of some extra computation. The second is to evalu-
ate the interaction between LUT optimization and parallel
performance on systems with different cache architectures.
Mesa is freely available for download and use [1].
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